版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省宿迁市沭阳县高三第二次联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A. B. C. D.2.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.3.甲在微信群中发了一个6元“拼手气”红包,被乙、丙、丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是()A. B. C. D.4.已知函数(,是常数,其中且)的大致图象如图所示,下列关于,的表述正确的是()A., B.,C., D.,5.函数与在上最多有n个交点,交点分别为(,……,n),则()A.7 B.8 C.9 D.106.已知复数是纯虚数,其中是实数,则等于()A. B. C. D.7.若复数是纯虚数,则()A.3 B.5 C. D.8.如图所示的程序框图,若输入,,则输出的结果是()A. B. C. D.9.若某几何体的三视图如图所示,则该几何体的表面积为()A.240 B.264 C.274 D.28210.观察下列各式:,,,,,,,,根据以上规律,则()A. B. C. D.11.设,则()A. B. C. D.12.设是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则二、填空题:本题共4小题,每小题5分,共20分。13.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥为阳马,侧棱底面,且,,设该阳马的外接球半径为,内切球半径为,则__________.14.在的展开式中,的系数为________.15.某公园划船收费标准如表:某班16名同学一起去该公园划船,若每人划船的时间均为1小时,每只租船必须坐满,租船最低总费用为______元,租船的总费用共有_____种可能.16.“学习强国”学习平台是由中宣部主管,以深入学习宣传新时代中国特色社会主义思想为主要内容,立足全体党员、面向全社会的优质平台,现已日益成为老百姓了解国家动态,紧跟时代脉搏的热门app.该款软件主要设有“阅读文章”和“视听学习”两个学习板块和“每日答题”、“每周答题”、“专项答题”、“挑战答题”四个答题板块.某人在学习过程中,将六大板块依次各完成一次,则“阅读文章”与“视听学习”两大学习板块之间最多间隔一个答题板块的学习方法有________种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知动圆经过点,且动圆被轴截得的弦长为,记圆心的轨迹为曲线.(1)求曲线的标准方程;(2)设点的横坐标为,,为圆与曲线的公共点,若直线的斜率,且,求的值.18.(12分)在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:分数不少于120分分数不足120分合计线上学习时间不少于5小时419线上学习时间不足5小时合计45(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)①按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);②若将频率视为概率,从全校高三该次检测数学成绩不少于120分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.(下面的临界值表供参考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(参考公式其中)19.(12分)某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆及其内接等腰三角形绕底边上的高所在直线旋转180°而成,如图2.已知圆的半径为,设,圆锥的侧面积为.(1)求关于的函数关系式;(2)为了达到最佳观赏效果,要求圆锥的侧面积最大.求取得最大值时腰的长度.20.(12分)以坐标原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,判断直线为参数)与圆的位置关系.21.(12分)如图,已知三棱柱中,与是全等的等边三角形.(1)求证:;(2)若,求二面角的余弦值.22.(10分)在如图所示的多面体中,四边形是矩形,梯形为直角梯形,平面平面,且,,.(1)求证:平面.(2)求二面角的大小.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
利用等差数列通项公式推导出λ,由d∈[1,2],能求出实数λ取最大值.【详解】∵数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是减函数,∴d=1时,实数λ取最大值为λ.故选D.【点睛】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.2、A【解析】
根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.3、B【解析】
将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,,,,,,,,,,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.【点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.4、D【解析】
根据指数函数的图象和特征以及图象的平移可得正确的选项.【详解】从题设中提供的图像可以看出,故得,故选:D.【点睛】本题考查图象的平移以及指数函数的图象和特征,本题属于基础题.5、C【解析】
根据直线过定点,采用数形结合,可得最多交点个数,然后利用对称性,可得结果.【详解】由题可知:直线过定点且在是关于对称如图通过图像可知:直线与最多有9个交点同时点左、右边各四个交点关于对称所以故选:C【点睛】本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题.6、A【解析】
对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【详解】因为为纯虚数,所以,得所以.故选A项【点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.7、C【解析】
先由已知,求出,进一步可得,再利用复数模的运算即可【详解】由z是纯虚数,得且,所以,.因此,.故选:C.【点睛】本题考查复数的除法、复数模的运算,考查学生的运算能力,是一道基础题.8、B【解析】
列举出循环的每一步,可得出输出结果.【详解】,,不成立,,;不成立,,;不成立,,;成立,输出的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.9、B【解析】
将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【详解】由三视图可得,该几何体的直观图如图所示,延长交于点,其中,,,所以表面积.故选B项.【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题10、B【解析】
每个式子的值依次构成一个数列,然后归纳出数列的递推关系后再计算.【详解】以及数列的应用根据题设条件,设数字,,,,,,,构成一个数列,可得数列满足,则,,.故选:B.【点睛】本题主要考查归纳推理,解题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项.11、C【解析】试题分析:,.故C正确.考点:复合函数求值.12、C【解析】
在A中,与相交或平行;在B中,或;在C中,由线面垂直的判定定理得;在D中,与平行或.【详解】设是两条不同的直线,是两个不同的平面,则:在A中,若,,则与相交或平行,故A错误;在B中,若,,则或,故B错误;在C中,若,,则由线面垂直的判定定理得,故C正确;在D中,若,,则与平行或,故D错误.故选C.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
该阳马补形所得到的长方体的对角线为外接球的直径,由此能求出,内切球在侧面内的正视图是的内切圆,从而内切球半径为,由此能求出.【详解】四棱锥为阳马,侧棱底面,且,,设该阳马的外接球半径为,该阳马补形所得到的长方体的对角线为外接球的直径,,,侧棱底面,且底面为正方形,内切球在侧面内的正视图是的内切圆,内切球半径为,故.故答案为.【点睛】本题考查了几何体外接球和内切球的相关问题,补形法的运用,以及数学文化,考查了空间想象能力,是中档题.解决球与其他几何体的切、接问题,关键是能够确定球心位置,以及选择恰当的角度做出截面.球心位置的确定的方法有很多,主要有两种:(1)补形法(构造法),通过补形为长方体(正方体),球心位置即为体对角线的中点;(2)外心垂线法,先找出几何体中不共线三点构成的三角形的外心,再找出过外心且与不共线三点确定的平面垂直的垂线,则球心一定在垂线上.14、【解析】
根据二项展开式定理,求出含的系数和含的系数,相乘即可.【详解】的展开式中,所求项为:,的系数为.
故答案为:.【点睛】本题考查二项展开式定理的应用,属于基础题.15、36010【解析】
列出所有租船的情况,分别计算出租金,由此能求出结果.【详解】当租两人船时,租金为:元,当租四人船时,租金为:元,当租1条四人船6条两人船时,租金为:元,当租2条四人船4条两人船时,租金为:元,当租3条四人船2条两人船时,租金为:元,当租1条六人船5条2人船时,租金为:元,当租2条六人船2条2人船时,租金为:元,当租1条六人船1条四人船3条2人船时,租金为:元,当租1条六人船2条四人船1条2人船时,租金为:元,当租2条六人船1条四人船时,租金为:元,综上,租船最低总费用为360元,租船的总费用共有10种可能.故答案为:360,10.【点睛】本小题主要考查分类讨论的数学思想方法,考查实际应用问题,属于基础题.16、【解析】
先分间隔一个与不间隔分类计数,再根据捆绑法求排列数,最后求和得结果.【详解】若“阅读文章”与“视听学习”两大学习板块相邻,则学习方法有种;若“阅读文章”与“视听学习”两大学习板块之间间隔一个答题板块的学习方法有种;因此共有种.故答案为:【点睛】本题考查排列组合实际问题,考查基本分析求解能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解析】
(1)设,则点到轴的距离为,因为圆被轴截得的弦长为,所以,又,所以,化简可得,所以曲线的标准方程为.(2)设,,因为直线的斜率,所以可设直线的方程为,由及,消去可得,所以,,所以.设线段的中点为,点的纵坐标为,则,,所以直线的斜率为,所以,所以,所以.易得圆心到直线的距离,由圆经过点,可得,所以,整理可得,解得或,所以或,又,所以.18、(1)填表见解析;有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”(2)①详见解析②期望;方差【解析】
(1)完成列联表,代入数据即可判断;(2)利用分层抽样可得的取值,进而得到概率,列出分布列;根据分析知,计算出期望与方差.【详解】(1)分数不少于120分分数不足120分合计线上学习时间不少于5小时15419线上学习时间不足5小时101626合计252045有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”.(2)①由分层抽样知,需要从不足120分的学生中抽取人,的可能取值为0,1,2,3,4,,,,,所以,的分布列:②从全校不少于120分的学生中随机抽取1人,此人每周上线时间不少于5小时的概率为,设从全校不少于120分的学生中随机抽取20人,这些人中每周线上学习时间不少于5小时的人数为,则,故,.【点睛】本题考查了独立性检验与离散型随机变量的分布列、数学期望与方差的计算问题,属于基础题.19、(1),(2)侧面积取得最大值时,等腰三角形的腰的长度为【解析】试题分析:(1)由条件,,,所以S,;(2)令,所以得,通过求导分析,得在时取得极大值,也是最大值.试题解析:(1)设交于点,过作,垂足为,在中,,,在中,,所以S,(2)要使侧面积最大,由(1)得:令,所以得,由得:当时,,当时,所以在区间上单调递增,在区间上单调递减,所以在时取得极大值,也是最大值;所以当时,侧面积取得最大值,此时等腰三角形的腰长答:侧面积取得最大值时,等腰三角形的腰的长度为.20、直线与圆C相切.【解析】
首先把直线和圆转换为直角坐标方程,进一步利用点到直线的距离的应用求出直线和圆的位置关系.【详解】直线为参数),转换为直角坐标方程为.圆转换为直角坐标方程为,转换为标准形式为,所以圆心到直线,的距离.直线与圆C相切.【点睛】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,直线与圆的位置关系式的应用,点到直线的距离公式的应用,主要考查学生的运算能力和转换能力及思维能力,属
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东理工职业学院《JavaWEB开发技术课程综合实践》2023-2024学年第一学期期末试卷
- 广东科贸职业学院《大学职业发展与就业指导4》2023-2024学年第一学期期末试卷
- 广东江门中医药职业学院《高等数学II》2023-2024学年第一学期期末试卷
- 广东机电职业技术学院《中学英语》2023-2024学年第一学期期末试卷
- 广东环境保护工程职业学院《工程荷载与可靠度设计方法》2023-2024学年第一学期期末试卷
- 广东财贸职业学院《经贸应用文写作》2023-2024学年第一学期期末试卷
- 共青科技职业学院《电力电子与变频技术》2023-2024学年第一学期期末试卷
- 中考物理基础复习课件
- 贸促会法律培训课件
- 赣南卫生健康职业学院《能源转换原理B》2023-2024学年第一学期期末试卷
- 儿科护理安全警示课件
- 2024-2025学年新疆省克孜勒苏柯尔克孜自治州三年级数学第一学期期末统考试题含解析
- 旧设备拆除合同安全责任书
- 隐患排查治理管理规定
- 2025材料供货合同样本
- 豪华酒店翻新工程协议
- 经济学原理模拟题含参考答案
- 幼儿园一日常规安全管理
- 考研心理学专业基础(312)研究生考试试题及解答参考(2025年)
- 科技强国建设视域下拔尖创新人才价值观引导研究
- 马鞍山酒柜定制合同范例
评论
0/150
提交评论