版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖北省孝感市高级中学高考数学必刷试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设集合,则()A. B.C. D.2.已知(i为虚数单位,),则ab等于()A.2 B.-2 C. D.3.设,为非零向量,则“存在正数,使得”是“”的()A.既不充分也不必要条件 B.必要不充分条件C.充分必要条件 D.充分不必要条件4.已知集合A={x|x<1},B={x|},则A. B.C. D.5.设复数满足为虚数单位),则()A. B. C. D.6.若平面向量,满足,则的最大值为()A. B. C. D.7.已知与之间的一组数据:12343.24.87.5若关于的线性回归方程为,则的值为()A.1.5 B.2.5 C.3.5 D.4.58.已知集合,,且、都是全集(为实数集)的子集,则如图所示韦恩图中阴影部分所表示的集合为()A. B.或C. D.9.已知等比数列满足,,则()A. B. C. D.10.已知全集,函数的定义域为,集合,则下列结论正确的是A. B.C. D.11.已知函数,当时,的取值范围为,则实数m的取值范围是()A. B. C. D.12.如图是函数在区间上的图象,为了得到这个函数的图象,只需将的图象上的所有的点()A.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变B.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变C.向左平移个长度单位,再把所得各点的横坐标变为原来的,纵坐标不变D.向左平移个长度单位,再把所得各点的横坐标变为原来的2倍,纵坐标不变二、填空题:本题共4小题,每小题5分,共20分。13.西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为__________.14.设为抛物线的焦点,为上互相不重合的三点,且、、成等差数列,若线段的垂直平分线与轴交于,则的坐标为_______.15.在中,已知,则的最小值是________.16.设为互不相等的正实数,随机变量和的分布列如下表,若记,分别为的方差,则_____.(填>,<,=)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)解不等式;(2)记函数的最大值为,若,证明:.18.(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.19.(12分)如图,在四边形中,,,.(1)求的长;(2)若的面积为6,求的值.20.(12分)已知函数,.(1)求的值;(2)令在上最小值为,证明:.21.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)若,求曲线与的交点坐标;(2)过曲线上任意一点作与夹角为45°的直线,交于点,且的最大值为,求的值.22.(10分)设函数其中(Ⅰ)若曲线在点处切线的倾斜角为,求的值;(Ⅱ)已知导函数在区间上存在零点,证明:当时,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
直接进行集合的并集、交集的运算即可.【详解】解:;∴.故选:B.【点睛】本题主要考查集合描述法、列举法的定义,以及交集、并集的运算,是基础题.2、A【解析】
利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解.【详解】,,得,..故选:.【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题.3、D【解析】
充分性中,由向量数乘的几何意义得,再由数量积运算即可说明成立;必要性中,由数量积运算可得,不一定有正数,使得,所以不成立,即可得答案.【详解】充分性:若存在正数,使得,则,,得证;必要性:若,则,不一定有正数,使得,故不成立;所以是充分不必要条件故选:D【点睛】本题考查平面向量数量积的运算,向量数乘的几何意义,还考查了充分必要条件的判定,属于简单题.4、A【解析】∵集合∴∵集合∴,故选A5、B【解析】
易得,分子分母同乘以分母的共轭复数即可.【详解】由已知,,所以.故选:B.【点睛】本题考查复数的乘法、除法运算,考查学生的基本计算能力,是一道容易题.6、C【解析】
可根据题意把要求的向量重新组合成已知向量的表达,利用向量数量积的性质,化简为三角函数最值.【详解】由题意可得:,,,故选:C【点睛】本题主要考查根据已知向量的模求未知向量的模的方法技巧,把要求的向量重新组合成已知向量的表达是本题的关键点.本题属中档题.7、D【解析】
利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【详解】利用表格中数据,可得又,.解得故选:D【点睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.8、C【解析】
根据韦恩图可确定所表示集合为,根据一元二次不等式解法和定义域的求法可求得集合,根据补集和交集定义可求得结果.【详解】由韦恩图可知:阴影部分表示,,,.故选:.【点睛】本题考查集合运算中的补集和交集运算,涉及到一元二次不等式和函数定义域的求解;关键是能够根据韦恩图确定所求集合.9、B【解析】由a1+a3+a5=21得a3+a5+a7=,选B.10、A【解析】
求函数定义域得集合M,N后,再判断.【详解】由题意,,∴.故选A.【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.11、C【解析】
求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.【详解】当时,,令,则;,则,∴函数在单调递增,在单调递减.∴函数在处取得极大值为,∴时,的取值范围为,∴又当时,令,则,即,∴综上所述,的取值范围为.故选C.【点睛】本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.12、A【解析】
由函数的最大值求出,根据周期求出,由五点画法中的点坐标求出,进而求出的解析式,与对比结合坐标变换关系,即可求出结论.【详解】由图可知,,又,,又,,,为了得到这个函数的图象,只需将的图象上的所有向左平移个长度单位,得到的图象,再将的图象上各点的横坐标变为原来的(纵坐标不变)即可.故选:A【点睛】本题考查函数的图象求解析式,考查函数图象间的变换关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由组合数结合古典概型求解即可【详解】从11个数中随机抽取3个数有种不同的方法,其中能构成勾股数的有共三种,所以,所求概率为.故答案为【点睛】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.14、或【解析】
设出三点的坐标,结合等差数列的性质、线段垂直平分线的性质、抛物线的定义进行求解即可.【详解】抛物线的准线方程为:,设,由抛物线的定义可知:,,,因为、、成等差数列,所以有,所以,因为线段的垂直平分线与轴交于,所以,因此有,化简整理得:或.若,由可知;,这与已知矛盾,故舍去;若,所以有,因此.故答案为:或【点睛】本题考查了抛物线的定义的应用,考查了等差数列的性质,考查了数学运算能力.15、【解析】分析:可先用向量的数量积公式将原式变形为:,然后再结合余弦定理整理为,再由cosC的余弦定理得到a,b的关系式,最后利用基本不等式求解即可.详解:已知,可得,将角A,B,C的余弦定理代入得,由,当a=b时取到等号,故cosC的最小值为.点睛:考查向量的数量积、余弦定理、基本不等式的综合运用,能正确转化是解题关键.属于中档题.16、>【解析】
根据方差计算公式,计算出的表达式,由此利用差比较法,比较出两者的大小关系.【详解】,故.,.要比较的大小,只需比较与,两者作差并化简得①,由于为互不相等的正实数,故,也即,也即.故答案为:【点睛】本小题主要考查随机变量期望和方差的计算,考查差比较法比较大小,考查运算求解能力,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析【解析】
(1)将函数整理为分段函数形式可得,进而分类讨论求解不等式即可;(2)先利用绝对值不等式的性质得到的最大值为3,再利用均值定理证明即可.【详解】(1)①当时,恒成立,;②当时,,即,;③当时,显然不成立,不合题意;综上所述,不等式的解集为.(2)由(1)知,于是由基本不等式可得(当且仅当时取等号)(当且仅当时取等号)(当且仅当时取等号)上述三式相加可得(当且仅当时取等号),,故得证.【点睛】本题考查解绝对值不等式和利用均值定理证明不等式,考查绝对值不等式的最值的应用,解题关键是掌握分类讨论解决带绝对值不等式的方法,考查了分析能力和计算能力,属于中档题.18、(1);(2).【解析】
(1)分类讨论去绝对值号,然后解不等式即可.(2)因为对任意,都存在,使得不等式成立,等价于,根据绝对值不等式易求,根据二次函数易求,然后解不等式即可.【详解】解:(1)当时,,则当时,由得,,解得;当时,恒成立;当时,由得,,解得.所以的解集为(2)对任意,都存在,得成立,等价于.因为,所以,且|,①当时,①式等号成立,即.又因为,②当时,②式等号成立,即.所以,即即的取值范围为:.【点睛】知识:考查含两个绝对值号的不等式的解法;恒成立问题和存在性问题求参变数的范围问题;能力:分析问题和解决问题的能力以及运算求解能力;中档题.19、(1)(2)【解析】
(1)利用余弦定理可得的长;(2)利用面积得出,结合正弦定理可得.【详解】解:(1)由题可知.在中,,所以.(2),则.又,所以.【点睛】本题主要考查利用正弦定理和余弦定理解三角形,已知角较多时一般选用正弦定理,已知边较多时一般选用余弦定理.20、(1);(2)见解析.【解析】
(1)将转化为对任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可证,使得,从而可确定在上单调递减,在上单调递增,进而可得,即,即可证出.【详解】函数的定义域为,因为对任意恒成立,即对任意恒成立,令,则,当时,,故在上单调递增,又,所以当时,,不符合题意;当时,令得,当时,;当时,,所以在上单调递增,在上单调递减,所以,所以要使在时恒成立,则只需,即,令,,所以,当时,;当时,,所以在单调递减,在上单调递增,所以,即,又,所以,故满足条件的的值只有(2)由(1)知,所以,令,则,当,时,即在上单调递增;又,,所以,使得,当时,;当时,,即在上单调递减,在上单调递增,且所以,即,所以,即.【点睛】本题主要考查利用导数法求函数的最值及恒成立问题处理方法,第(2)问通过最值问题深化对函数的单调性的考查,同时考查转化与化归的思想,属于中档题.21、(1),;(2)或【解析】
(1)将曲线的极坐标方程和直线的参数方程化为直角坐标方程,联立方程,即可求得曲线与的交点坐标;(2)由直线的普通方程为,故上任意一点,根据点到直线距离公式求得到直线的距离,根据三角函数的有界性,即可求得答案.【详解】(1),.由,得,曲线的直角坐标方程为.当时,直线的普通方程为由解得或.从而与的交点坐标为,.(2)由题意知直线的普通方程为,的参数方程为(为参数)故上任意一点到的距离为则.当时,的最大值为所以;当时,的最大值为,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文言文双文本阅读:颜蠋与齐王游(附答案解析与译文)
- 小学一年级10到20加减法练习题,口算
- 小学数学五年级小数加减乘除法口算练习题
- 学度第一学期末高三级地理科期末考试试卷
- 高考语文试题分类汇编标点符号
- 广东省深圳市罗湖区高三2023-2024学年上学期1月期末英语试题
- 服饰设计师工作总结设计时尚服装引领潮流
- 文化艺术话务员工作总结
- 医疗器械销售人员工作总结
- 证券投资行业市场总结
- 2024年西藏中考语文真题
- 某大厦10kv配电室增容改造工程施工方案
- 中建“大商务”管理实施方案
- 2024年航空职业技能鉴定考试-航空乘务员危险品考试近5年真题集锦(频考类试题)带答案
- 表 6-1-12 咽喉部检查法评分标准
- 2024-2025学年四年级科学上册第一单元《声音》测试卷(教科版)
- 2024年湖南省长沙市中考数学试题(含解析)
- 2024年大学华西医院运营管理部招考聘用3人高频难、易错点500题模拟试题附带答案详解
- 深圳市南山区2024-2025学年数学三年级第一学期期末教学质量检测模拟试题含解析
- 小学三年级信息技术考核方案
- 配电网工程工艺质量典型问题及解析
评论
0/150
提交评论