山东省威海市2021年中考数学真题试题(答案+解析)_第1页
山东省威海市2021年中考数学真题试题(答案+解析)_第2页
山东省威海市2021年中考数学真题试题(答案+解析)_第3页
山东省威海市2021年中考数学真题试题(答案+解析)_第4页
山东省威海市2021年中考数学真题试题(答案+解析)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021年山东省威海市中考数学试卷

一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一

个是正确的.每小题选对得3分,选错、不选或多选,均不得分)

1.-』的相反数是()

5

11

A.-5B.5C.--D.一

55

2.据光明日报网,中国科学技术大学潘建伟、陆朝阳等人构建了一台76个光子100个模式的量子计算机

“九章”.它处理“高斯玻色取样”的速度比目前最快的超级计算机“富岳”快一百万亿倍.也就是说,

超级计算机需要一亿年完成的任务,“九章”只需一分钟.其中一百万亿用科学记数法表示为()

A.lOxlO12B.lOxlO14C.IxlO14D.IxlO15

3.若用我们数学课本上采用的科学计算器计算sin36。18',按键顺序正确的是()

A.国叵]叵匚叵]臼

B.□EJE国।DMS।mmn

C.I2ndfIQh]Q]国|DMSIEOQJS

D.E?inj§@[DMS][jJ囚IDMSI臼

4.下列运算正确的是()

A.(―3a?)3=—9a,B.(―a)?•a'=a、

C.(2x-y)2=4x2-y2D.a2+4a2=5a4

5.如图所示的几何体是由5个大小相同的小正方体搭成的.其左视图是()

6.某校为了解学生的睡眠情况,随机调查部分学生一周平均每天的睡时间,统计结果如表:

时间/小

78910

这些学生睡眠时间的众数、中位数是(

A.众数是11,中位数是8.5B.众数是9,中位数是8.5

C.众数9,中位数是9D.众数是10,中位数是9

7.解不等式组《2时,不等式①②的解集在同一条数轴上表示正确的是(

X-3(2尤一1)28②

<1d_।__।__।-L.

•3-2-10123

8.在一个不透明的袋子里装有5个小球,每个球上都写有一个数字,分别是1,2,3,4,5,这些小球除

数字不同外其它均相同.从中随机一次摸出两个小球,小球上的数字都是奇数的概率为()

6933

A.—B.—C.—D.一

2525105

9.如图,在平行四边形ABCD中,A£>=3,CD=2.连接AC,过点B作BE//AC,交OC的延长线于

点E,连接AE,交BC于点F.若ZAFC=2ND,则四边形ABEC的面积为()

A.y/5B.275D.2713

10.一次函数乂=勺%+。代工0)与反比例函数%=:(%2力0)的图象交于点A(T,-2),点8(2,1).当

y<必时,x的取值范围是()

A.XV—1B.-lev。或龙〉2

C.0<x<2D.0<x<2或x<-l

11.如图,在AABC和AA£)£中,^CAB=ZDAE=36°,AB^AC,AD^AE.连接C。,连接BE

并延长交AC,AO于点F,G.若BE恰好平分NABC,则下列结论错误的是()

A.ZADC=ZAEBB.CD//ABC.DE=GED.BF2=CF-AC

12.如图,在菱形ABC。中,AB=2cm,NO=60。,点P,。同时从点A出发,点P以Icm/s的速度沿

A-C-。的方向运动,点。以2c/n/s的速度沿4-B-C-0的方向运动,当其中一点到达。点时;两点停

止运动.设运动时间为x(s),AAPQ的面积为y(c加),则下列图象中能大致反映y与x之间函数关系的

是()

DC

二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)

13.计算J源-后的结果是.

14.分解因式:2丁—18盯2=

15.如图,在AABC中,ABAC>90°,分别以点4,B圆心,以大于长为半径画弧,两弧交于点

2

D,E.作直线OE,交BC于点M.分别以点A,C为圆心,以大于工AC1长为半径画弧,两弧交于点F,

2

G.作直线FG,交8c于点N.连接AM,AN.若NB4C=a,则NM4N=

4

16.已知点A为直线y=-2x上一点,过点A作AB〃x轴,交双曲线)'=一于点B.若点A与点B关于y

X

轴对称,则点A的坐标为.

17.如图,先将矩形纸片ABC。沿EF折叠(AB边与OE在CF的异侧),AE交CF于点G;再将纸片折叠,

使CG与AE在同一条直线上,折痕为G”.若NAEF=a,纸片宽AB=2cm,则”E=cm.

18.如图,在正方形ABC。中,AB=2,E为边AB上一点,F为边BC上一点.连接。E和4尸交于点G,

连接BG.若AE=BF,则BG的最小值为.

三、解答题(本大题共7小题,共66分)

19.先化简("二!,a+l,然后从—1,0,1,3中选一个合适数作为〃的值代入求值.

a-3a-6a+9

20.某校为提高学生的综合素养,准备开展摄影、书法、绘画、表演、手工五类社团活动.为了对此项活动

进行统筹安排,随机抽取了部分学生进行调查,要求每人从五个类别中只选择一个,将调查结果绘制成了

两幅统计图(未完成).请根据统计图中的信息,解答下列问题:

人数

(1)本次共调查了名学生;

(2)请将条形统计图补充完整;

(3)扇形统计图中,“摄影”所占的百分比为;“手工”所对应的圆心角的度数为

(4)若该校共有2700名学生,请估计选择“绘画”的学生人数.

21.六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了

20%,同样用3000元购进的数量比第一次少了10件.

(1)求第一次每件的进价为多少元?

(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?

22.在一次测量物体高度的数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如

图,他先在点B处安置测倾器,于点A处测得路灯MN顶端的仰角为10。,再沿8N方向前进10米,到达

点。处,于点C处测得路灯P。顶端的仰角为27°.若测倾器的高度为1.2米,每相邻两根灯柱之间的距离

相等,求路灯的高度(结果精确到01米).

(参考数据:sinl0°«0.17,cos10°«0.98,tan100»0.18,sin27°=0.45,cos27°«0.89,

tan27°«0.51)

23.如图,AB是o。直径,弦CDA.AB,垂足为点E.弦BF交CQ于点G,点P在CQ延长线上,且PF=PG.

(1)求证:尸产为OO切线;

(2)若Qg=10,BF=16,BE=8,求PF的长.

24.在平面直角坐标系中,抛物线丁=%2+2/〃氏+2/〃2-m的顶点为人.

(1)求顶点A的坐标(用含有字母根的代数式表示);

(2)若点8(2,%),。(5,%)在抛物线上,且为〉/,则山的取值范围是;(直接写出结果即

可)

(3)当时,函数y的最小值等于6,求机的值.

25.(1)已知AAbC,AAOE如图①摆放,点8,C,。在同一条直线上,ABAC=ZDAE=90°,

ZABC=AADE=45°.连接BE,过点A作AE,8。,垂足为点F,直线AF交8E于点G.求证:BG=EG.

(2)已知AABC,AADE如图②摆放,ZBAC^ZDAE=90°,ZACB=ZADE=30°.连接BE,CD,

过点4作A尸,8£,垂足为点尸,直线A尸交C。于点G.求贬值.

B

图①图②

2021年山东省威海市中考数学试卷

一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一

个是正确的.每小题选对得3分,选错、不选或多选,均不得分)

1.-』的相反数是()

5

11

A.~5B.5C.~—D.—

55

【答案】D

【解析】

【分析】互为相反数的两个数和为零,据此即可解题.

【详解】()H——0

55

•••一(的相反数为;.

故选D.

点睛:此题主要考查了求一个数的相反数,关键是明确相反数的概念.

2.据光明日报网,中国科学技术大学的潘建伟、陆朝阳等人构建了一台76个光子100个模式的量子计算机

“九章”.它处理“高斯玻色取样”的速度比目前最快的超级计算机“富岳”快一百万亿倍.也就是说,

超级计算机需要一亿年完成的任务,“九章”只需一分钟.其中一百万亿用科学记数法表示为()

A.lOxlO12B.lOxlO14C.IxlO14D.IxlO15

【答案】C

【解析】

【分析】科学记数法的表示形式为aXIO"的形式,其中1WI3V10,〃为整数.确定"的值时,要看把原数

变成〃时,小数点移动了多少位,〃的绝对值与小数点移动的位数相同.当原数绝对值》10时,〃是正数;

当原数的绝对值<1时,"是负数.

【详解】解:一百万亿=100000000000000=lx10",

故选:C.

【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为“X10"的形式,其中lW|a|<10,〃为

整数,表示时关键要正确确定。的值以及"的值.

3.若用我们数学课本上采用的科学计算器计算sin36。18',按键顺序正确的是()

A.bin||V][6j匚]IDj8I曰

B.□nJELL],DMST]FT||

C.I2ndf|宣I叵]①|DMS1[7]QjB

D.Isini国EPbMSIm®IDMSI臼

【答案】D

【解析】

【分析】根据计算器按键顺序计算即可.

【详解】解:根据计算器的按键顺序可知,

正确的按键顺序为D选项,

故选:D.

【点睛】本题主要考查用计算器计算三角函数值,熟悉计算器的按键顺序是解题的关键.

4.下列运算正确的是()

A(-3。2)3=_9*B.(-。)2,=/

c.(2x—y)2=4f_y2D,a2+4a2=5cz4

【答案】B

【解析】

【分析】分别根据积的乘方和事的乘方运算法则、同底数基的乘法、完全平方公式以及合并同类项的运算

法则对各项进行计算后再判断即可.

【详解】解:4(-34)3=一27。6,原选项计算错误,不符合题意;

8.(—a)2./=/原选项计算正确,符合题意;

C.(2x—>)2=4/—4盯+/,原选项计算错误,不符合题意;

D.a2+4a2=5a2,原选项计算错误,不符合题意;

故选:B.

【点睛】此题主要考查了积的乘方和幕的乘方、同底数幕的乘法、完全平方公式以及合并同类项,熟练掌

握相关运算法则是解答此题的关键.

5.如图所示的几何体是由5个大小相同的小正方体搭成的.其左视图是()

【答案】A

【解析】

【分析】根据左视图是从左面看到的图形进而得出答案.

【详解】从左面看,易得下面一层有3个正方形,上面一层中间有一个正方形,

,该几何体的左视图是:

故选A.

【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.

6.某校为了解学生的睡眠情况,随机调查部分学生一周平均每天的睡时间,统计结果如表:

时间/小

78910

人数69114

这些学生睡眠时间的众数、中位数是()

A.众数是11,中位数是8.5B.众数是9,中位数是8.5

C.众数是9,中位数是9D.众数是10,中位数是9

【答案】B

【解析】

【分析】根据众数和中位数的定义,即可求解.

【详解】解:睡眠时间为9小时的人数最多,学生睡眠时间的众数是9小时,

一共有30个学生,睡眠时间从小到大排序后,第15、16个数据分别是:8,9,即:中位数为85

故选B.

【点睛】本题主要考查中位数和众数,熟练掌握中位数和众数的定义,是解题的关键.

7.解不等式组J2时,不等式①②的解集在同一条数轴上表示正确的是()

x-3(21)28②

02

B.,

-3-2-10123

C.—।_J—।—।—i—1,

•3-2-10123

【答案】A

【解析】

【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.

【详解】解不等式①得:x>-3,

解不等式②得:xW-1,

不等式组的解集为-3<rW-l,

将不等式组的解集表示在数轴上如下:

-3-2-I0I23

故选A.

【点睛】本题考查了解一元一次不等式组,在数轴上表示不等式的解集解不等式组时要注意解集的确定原

则:同大取大,同小取小,大小小大取中间,大大小小无解了.

8.在一个不透明的袋子里装有5个小球,每个球上都写有一个数字,分别是1,2,3,4,5,这些小球除

数字不同外其它均相同.从中随机一次摸出两个小球,小球上的数字都是奇数的概率为()

【答案】C

【解析】

【分析】通过列举的方法将所有可能的情况一一列举,进而找出小球上的数字都是奇数的情况即可求出对

应概率.

【详解】所有可能出现的情况列举如下:

(1,2);(1,3);(1,4);(1,5)

(2,3);(2,4);(2,5)

(3,4);(3,5)

(4,5)

共10种情况,

符合条件的情况有:(1,3);(1,5);(3,5);共3种情况;

小球上的数字都是奇数的概率为三,

10

故选:C.

【点睛】本题主要考查了简单概率的求解方法,通过列举法列举出等可能的情况是解决本题的关键.

9.如图,在平行四边形ABCO中,AD=3,CD=2.连接AC,过点8作8E〃AC,交OC的延长线于

点E,连接AE,交BC于点凡若ZAFC=2ZD,则四边形ABEC的面积为()

A.y/5B.2石C.6D.2V13

【答案】B

【解析】

【分析】先证明四边形ABEC为矩形,再求出4C,即可求出四边形ABEC的面积.

【详解】解:;四边形ABCQ平行四边形,

J.AB//CD,AB=CD=2,BC=AD=3,ZD=ZABC,

BE//AC,

四边形A8EC为平行四边形,

,/ZAFC=2Z£>,

?.ZAFC=2ZABC,

•••ZAFC^ZABF+ZBAF,

:.NABF=NBAF,

:.AF=BF,

:.2AF=2BF,

即BC=AE,

二平行四边形ABEC是矩形,

ZBAC=90a,

AC=y]BC2-AB2=V32+22=石,

,矩形ABEC的面积为A8.AC=2石.

故选:B

【点睛】本题考查了平行四边形的性质,矩形的判定与性质,勾股定理等知识,熟知相关定理,证明四边

形ABEC为矩形是解题关键.

k

10.一次函数乂=心+/仁。0)与反比例函数必=;(自声0)的图象交于点4(一1,一2),点8(2,1).当

,<当时,x的取值范围是()

A.x<—1B.-l<x<0或x>2

C.0<X<2D.0<x<2或x<-l

【答案】D

【解析】

【分析】先确定一次函数和反比例函数解析式,然后画出图象,再根据图象确定x的取值范围即可.

【详解】解:;两函数图象交于点A(-l,-2),点8(2,1)

由函数图象可得,<%的解集为:0<x<2或x<-l.

故填D.

【点睛】本题主要考查了运用待定系数法求函数解析式以及根据函数图象确定不等式的解集,根据题意确

定函数解析式成为解答本题的关键.

11.如图,在AABC和AADE中,ZCAB=ZDAE=36°,AB=AC,AD=AE.连接CD,连接BE

并延长交AC,于点凡G.若BE恰好平分NA8C,则下列结论错误的是()

A.ZADC=ZAEBB.CD//ABC.DE=GED.BF2=CF-AC

【答案】C

【解析】

【分析】根据SAS即可证明再利用全等三角形的性质以及等腰三角形的性质,结合相

似三角形的判定和性质,即可一一判断

【详解】AB=AC,AD=AE,ZCAB=ZDAE=36°

:.ZDAC=ZEAB

•••^DAC^^EAB

:.ZADC=ZAEB,故选项A正确;

•.•A8=AC,NC48=36°

:.ZABC=ZACB=72°

•.•BE平分NA8C

ZABE=NCBF=-ZABC=36°

2

•••^DAC^/XEAB

:.ZACD^ZABE=36°

.-.ZACD=ZCAB

:.CD//AB,故选项B正确;

A。=AE,N£>AE=36°

:.ZADE=72°

ZDGE=ZDAE+AEAB+ZABE=72°+ZEAB

即NAOE/NOGE

:.DE手GE,故选项C错误;

AABC=ZACB=72°,ZCAB=ZCBF=36°

ZCFB=72°

BC=BF

:.XABCsXBFC

BFCF

-,-AB=AC

BFCF

•耘一族

BF?=CF-AC,故选项D正确;

故答案选:C.

【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,相似三角形的判定和性质,平

行线的判定,能利用全等三角形的判定和性质以及等腰三角形的性质是解题关键.

12.如图,在菱形ABC。中,AB=2cm,ND=60°,点尸,。同时从点A出发,点P以lcm/s的速度沿

A-C-Z)的方向运动,点Q以2c〃心的速度沿A-8-C-。的方向运动,当其中一点到达。点时,两点停

止运动.设运动时间为x(s),AAPQ的面积为y(5於),则下列图象中能大致反映),与x之间函数关系的

是()

【答案】A

【解析】

【分析】先证明/。48=乙4(78=乙痣£>=60°,再分OWxWl、lVx<2、2<xW3三种情况画出图形,求出

函数解析式,根据二次函数、一次函数图象与性质逐项排除即可求解.

【详解】解:•••四边形ABCQ是菱形,

:.AB=BC=CD=AD,ZB=ZD=60°,

.•.△ABC,ACC都是等边三角形,

AZCAB=ZACB=ZACD=60Q.

如图1,当OWxWl时,AQ=2x,AP=x,

作PEVAB于E,

G

:.PE=AP・sinZPAE=—x,

2

•旦=22

.222

故D选项不正确;

图1

如图2,当1〈烂2时,CP=2-x,CQ=4-2x,BQ=2x-2,

作PF1BC与F,作QH1,AB于H,

PF=CP・sinZPCF=争27),

Q”=BQ・sinZB=-y(2x-2)=A^(X-I).

y=^-x2~--x2x^(x-l)--x(4-2x)»^^(2-x)=-^-x2+A/3X-

故B选项不正确;

C

D

Q

B

AH

图2

当2VxW3时,CP=x-2fC(2=2x-4,

:.PQ=x-2,

作AG_LCD于G,

/.AG=AC・sinNACO=走x2=6,

2

y=gx(x-2).G=乎工一百,

故C不正确.

【点睛】本题考查了菱形性质,等边三角形性质,二次函数、一次函数图象与性质,利用三角函数解三角

形等知识,根据题意分类讨论列出函数解析式是解题关键.

二、填空题(本大题共6小题,每小题3分,共18分.只要求填出最后结果)

与xj方的结果是

13.计算J源-

【答案】-指

【解析】

【分析】根据二次根式的四则运算法则进行运算即可求解.

V6

【详解】解:原式=2x3石

3

=276-376

-瓜,

故答案为:-瓜.

【点睛】本题考查了二次根式的四则运算,属于基础题,计算过程中细心即可求解.

14.分解因式:2/—18孙2=.

【答案】2x(x+3y)(x-3y)

【解析】

【分析】先提公因式,再利用平方差公式即可分解.

【详解】解:2d—18盯2=2x(x?—9),2)=2x(x+3y)(x—3y).

故答案为:2x(x+3y)(x-3y)

【点睛】本题考查了整式的因式分解,因式分解的一般步骤是“一提二看三检查”,熟知提公因式法和乘

法公式是解题关键.

15.如图,在AABC中,NB4c>90。,分别以点A,8为圆心,以大于长为半径画弧,两弧交于点

2

D,E.作直线DE,交BC于点、M.分别以点4,C为圆心,以大于」AC长为半径画弧,两弧交于点儿

2

G.作直线FG,交BC于点M连接AM,AN.若ZR4C=a,则NWW=.

【答案】2a-180°

【解析】

【分析】先根据作图可知OE和尸G分别垂直平分A8和AC,再利用线段的垂直平分线的性质得到/8=

NBAM,NC=NCAN,即可得到/MAN的度数.

【详解】解:由作图可知,DE和FG分别垂直平分AB和AC,

:.MB=MA,NA=NC,

:.ZMAB,NC=NNAC,

在AABC中,ZBAC=a,

,/B+NC=180°-NBAC=180°-a,

即/M4B+/NAC=180°-a,

则/MAN=/BAC-(ZMAB+ZNAC)=a-(180°-«)=21-180°.

故答案是:2a-180°.

【点睛】此题主要考查线段的垂直平分线的性质以及三角形内角和定理.解题时注意:线段的垂直平分线

上的点到线段的两个端点的距离相等.

4

16.已知点A为直线y=-2x上一■点,过点A作AB〃x轴,交双曲线旷=—于点B.若点A与点B关于y

x

轴对称,则点A的坐标为.

【答案】(夜2夜)或(-灰,20)

【解析】

4

【分析】设点A坐标为(x,-2x),则点B的坐标为(一羽―2x),将点8坐标代入丁=一,解出x的值即可

X

求得A点坐标.

【详解】解:•・,点A为直线y=-2x上一点,

设点A坐标为(%,-2x),

则点B的坐标为(―%—2x),

4

・・•点8在双曲线了二一上,

x

4

将(―x,—2x)代入y=—中得:

x

-2x=-±

X

解得:x=±五,

当彳=立时,y=-2x=-2y/2,

当%=-近时,y=-2x=2立,

点A的坐标为(JI,-20)或(-V2.2V2),

故答案为:(0,-2&)或(-72,272).

【点睛】本题主要考查一次函数与反比例函数综合问题,用到了关于一条直线的两个点的坐标关系,熟知

对称点坐标的关系是解决问题的关键.

17.如图,先将矩形纸片ABC。沿EF折叠(4B边与OE在C尸的异侧),AE交CF于点G;再将纸片折叠,

使CG与AE在同一条直线上,折痕为GH.若NAEF=a,纸片宽AB=2cm,则HE=cm.

【答案】----------

sinacosa

【解析】

【分析】根据题意,证明四边形GHEF是平行四边形,运用ZAEF的正弦和余弦的关系,求出HE.

【详解】如图,分别过G、E作GMJ_HE,ENLGH,垂足分别为M.N

则GM=2

根据题意,ZAEF=c,因为折叠,则NEEP=a

•••四边形48CD是矩形

GFHHE

Z.GFE=a

:.GF=GE

同理HE=GE

四边形GHEF是平行四边形

/.NGHE-a

•••ENLGH,HE=GE

HN=NG=>HG

2

-----=sinZGHM=sina

HG

2

HG

sina

A±HN

RtAHNE中,——二cos/NHE=cosa

HE

HN

:・HE=

cosa

1

-HG

2___sine=1

COS<2cosasinacosa

故答案为:----------.

sinacosa

【点睛】本题考查了轴对称图形,平行四边形的性质与判定,锐角三角函数,理解题意作出辅助线,是解

题的关键.

18.如图,在正方形A8CQ中,A3=2,E为边A8上一点,F为边BC上一点.连接。E和AF交于点G,

连接BG.若AE=BF,则BG的最小值为

【答案】75-1•

【解析】

【分析】根据SAS证明得/A£>E=NBAF,再证明NZ)GA=90。,进一步可得点G在以A。

为直径的半圆上,且O,G,8三点共线时8G取得最小值.

【详解】解:•••四边形ABC。正方形,

;.NABC-NDAE,AD=AB,

':AE=BF

:.^DEA^/\AFB,

ZADE=ZBAF,

:.ZDAF+ZBAF=ZDAB=90°,

:.ZADE+ZDAF^O0

:.ZDGA=90°

...点G在以AO为直径的圆上移动,连接08,0G,如图:

2

在放AAOS中,NOAB=90°

:6=收+*=亚

BG>OB-OG

.•.当且公当O,G,B三点共线时BG取得最小值.

.•.BC的最小值为:V5-1.

【点睛】此题主要考查了全等三角形的判定与性质,正方形的性质,三角形三边关系,圆周角定理等相关

知识,正确引出辅助线解决问题是解题的关键.

三、解答题(本大题共7小题,共66分)

19.先化简(土二—,a+1,然后从—1,0,1,3中选一个合适的数作为a的值代入求值.

。一3。~-6。+9

【答案】2(a-3),当。=0时、原式二-6;当。=1时,原式二-4.

【解析】

【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据分式有意义的条件确定a的值,继而代

入计算可得答案.

【详解】(公-。7+六篇

a2-1(tz+l)(a-3)a+1

,-3a-3_(〃一3『

_cr-la2-2a-3^(<7-3)"

—3Q—3jQ+1

=/一]一/+2Q+3(。-3)-

(1—3。+1

2

=2(a+l)(a-3)

a-3a+\

-2(a-3),

且a#-l,

a=0,a=l,

当a=0时,原式=2X(0-3)=-6;

当a=l时,原式=2X(1-3)=4

【点睛】本题考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.

20.某校为提高学生的综合素养,准备开展摄影、书法、绘画、表演、手工五类社团活动.为了对此项活动

进行统筹安排,随机抽取了部分学生进行调查,要求每人从五个类别中只选择一个,将调查结果绘制成了

两幅统计图(未完成).请根据统计图中的信息,解答下列问题:

(1)本次共调查了名学生;

(2)请将条形统计图补充完整:

(3)扇形统计图中,“摄影”所占的百分比为;“手工”所对应的圆心角的度数为.

(4)若该校共有2700名学生,请估计选择“绘画”的学生人数.

【答案】(1)600;(2)见详解图;(3)15%;36°;(4)675人

【解析】

【分析】(1)根据书法总人数180人,占调查总数的30%,可求出调查总人数;

(2)求出表演和手工的总人数,补全条形图即可;

(3)用摄影的总人数除以调查的总人数即可求出摄影所占百分比,再用手工总人数除以调查总人数得出手

工所占百分比再乘以360°即可求出手工所对应的扇形圆心角的度数;

(4)求出绘画所占百分比再乘以该校总人数即可.

【详解】(1)180-30%=600(人)

(2)表演的人数为600x20%=120(人),手工的人数为600-90-180-150—120=60(人),补全条

形图如下:

患36。。

(3)摄影所占百分比为:—X100%=15%;手工所对应的圆心角度数为:=36°

600

(4)由样本估计总体得到x2700=675(人)

600

答:该校2700名学生,估计选择“绘画”的学生人数为675人.

【点睛】本题考查了条形统计图,扇形统计图,理解两个统计图中数量之间的关系是解题关键.

21.六一儿童节来临之际,某商店用3000元购进一批玩具,很快售完;第二次购进时,每件的进价提高了

20%,同样用3000元购进的数量比第一次少了10件.

(1)求第一次每件的进价为多少元?

(2)若两次购进的玩具售价均为70元,且全部售完,求两次的总利润为多少元?

【答案】(1)第一次每件的进价为50元;(2)两次的总利润为1700元.

【解析】

【分析】(1)设第一次每件的进价为x元,则第二次进价为(1+20%)x,根据等量关系,列出分式方程,

即可求解;

(2)根据总利润=总售价-总成本,列出算式,即可求解.

【详解】解:⑴设第一次每件的进价为x元,则第二次进价为(1+20%)x,

30003000

根据题意得:10,解得:k50,

x(l+20%)x

经检验:尸50是方程的解,且符合题意,

答:第一次每件的进价为50元;

‘30003000

(2)+-7---------;-----x70-6000=1700(元),

(1+20%)X50)

答:两次的总利润为1700元.

【点睛】本题主要考查分式方程的实际应用,找准等量关系,列出分式方程,是解题的关键.

22.在一次测量物体高度数学实践活动中,小明从一条笔直公路上选择三盏高度相同的路灯进行测量.如

图,他先在点B处安置测倾器,于点A处测得路灯顶端的仰角为10。,再沿BN方向前进10米,到达

点。处,于点C处测得路灯P。顶端的仰角为27。.若测倾器的高度为1.2米,每相邻两根灯柱之间的距离

相等,求路灯的高度(结果精确到01米).

(参考数据:sin10°»0.17,cos10°»0.98,tanl0°«0.18,sin27°=0.45,cos27°®0.89,

tan27°«0.51)

【解析】

【分析】延长AC交PQ于点E,交MN于点F,由题意可得,AB=CD=EQ=FN=1.2,NPEC=NME4=90°,

NMAF=10°,NPCE=27°,AC=10,AE=BQ=EF=QN,设路灯的高度为xm,贝ijMN=PQ=xm,MF=PE=x-1.2;

r-17r-1?

在中求得FZ=——-,即可得AE=........-;

tan1002tan10°

_X_1.2

tan27°=___________

在Rt^CEP中,可得—x-1.22由此即可求得路灯的高度为13.4m.

2tan10°一

【详解】延长AC交PQ于点E,交MN于点F,

由题意可得,AB=CD=EQ=FN=\2,ZPEC=ZMFA=90°,ZMAF=10°,ZPCE=27°,AGIO,

AE=BQ=EF=QN,

设路灯的高度为xm,则MN=PQ=xm,MF=PE=x-1.2,

MF

在中,ZMAF=1O°,MF=x-1.2,tanZMAF

FA

x—1.2

/.tan10=---------,

FA

."4x—1.2

tan10°

..j-.1.j-.1x—1.2x-1.2

..AE=—AF=------------

22tan1002tan10°

x-1.2

CE=AE-AC=---------10,

2tan10°

x—1.2pp

在RtMEP中,ZPCE=27°,CE=---------10,tanZPCE=—

2tan10°CE

tan27°=―—

A'-

2tan10°

解得XQ13.4,

路灯的高度为13.4m.

答:路灯的高度为13.4m.

【点睛】本题考查了解直角三角形的应用,构造直角三角形,熟练运用三角函数解直角三角形是解决问题

的关键.

23.如图,AB是。。直径,弦CD1,垂足为点E.弦BF交C。于点G,点P在CQ延长线上,且PF=PG.

(1)求证:尸尸为切线;

(2)若08=10,BF=16,BE=8,求PF的长.

【答案】(1)见解析;(2)5

【解析】

【分析】(1)连接OF,根据等腰三角形性质可得/尸FG=NPGF,ZOBF=ZOFB,再证明

NOFB+NPFG=90°,即可得NPFO=90°,由此证得PF为(DO切线;

(2)连接AF,过点P作PNLFG于点N,由AB是QO直径,可得NAFB=90°,在RtAABF中求得4尸=12,

FG12FG

再由tan/ER4=—=—,可得一=——,求得EG=6:在RiaBEG中求得BG=10;再根据等腰三角

FBBE168

形性质可得FN=NG=3,再证明△PNFs△BEG,根据相似三角形的性质即可求得PF=5.

【详解】(1)连接。凡

,?PF=PG,

:.NPFG=NPGF,

':OB=OF,

:.NOBF=NOFB,

':CDLAB,

:.ZGEB=90°,

;.NABF+NEGB=9()°,

,/NEGB=/PGF,

:.ZOFB+ZPFG=9Q°,

・・・/尸尸。=90°,

・・・尸尸为。。切线;

(2)连接AF,过点尸作尸NLbG于点M

TAB是OO直径,

AZAFB=90°,

08=10,

:.AB=20t

在RtaAB尸中,AB=20t8尸=16,

:.AF=\2,

,/tanZFBA=—=—,

FBBE

.12EG

/.--=---,

168

:.EG=6t

在RtZ\BEG中,BE=8,EG=6,

:.BG=\09

/.FG=FB-BG=16-10=6,

•:PF=PG,PN工FG,

:,FN=NG=3,ZPNF=90。,

■:/PFG=/PGF=/EGB,ZPNF=ZGEB=90°,

J△PM"ABEG,

.PFFN

/.---=---,

BGEG

3

,,.,PF,

106

PF=5.

【点睛】本题考查了切线的判定定理、等腰三角形的性质、三角函数及相似三角形的判定与性质,熟练运

用相关知识是解决问题的关键.

24.在平面直角坐标系中,抛物线y=f+2/nr+2〃,一/〃的顶点为A.

(1)求顶点A的坐标(用含有字母,"的代数式表示);

(2)若点8(2,乃),。(5,外)在抛物线上,且为〉先,则根的取值范围是;(直接写出结果即

可)

(3)当1<%<3时,函数y的最小值等于6,求相的值.

【答案】(1)顶点A的坐标为(-九阳2、.加);(2)根〉一7⑶加=±-1士4-±^/4或7一2

24

【解析】

【分析】(1)将抛物线解析式化成y=(x+m)2+〃/-机的形式,即可求得顶点A的坐标;

(2)将3(2,%),C(5/c)代入抛物线中求得力和光的值,然后再解不等式即可求解;

(3)分类讨论,分对称轴在1的左侧、对称轴在3的右侧、对称轴在1,3之间共三种情况分别求出函数的最小

值,进而求出机的值.

【详解】解:(1)由题意可知:

抛物线y=x1+2iwc4-2m2-m=(x+m)24-m2-nz,

顶点A的坐标为(-m,m2-m);

(2)将3(2,代入y=f+2g+2加2-加中,

得到=22+2mx2+2/??2-m-2m1+3m+4,

将C(5,人)代入y=x2+2twc+2m2-〃2中,

222

得到yc=5+2mx5+2m-m=2m+9m+25,

由已知条件知:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论