2024届湖南省衡阳市衡阳县六中数学高二第二学期期末预测试题含解析_第1页
2024届湖南省衡阳市衡阳县六中数学高二第二学期期末预测试题含解析_第2页
2024届湖南省衡阳市衡阳县六中数学高二第二学期期末预测试题含解析_第3页
2024届湖南省衡阳市衡阳县六中数学高二第二学期期末预测试题含解析_第4页
2024届湖南省衡阳市衡阳县六中数学高二第二学期期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省衡阳市衡阳县六中数学高二第二学期期末预测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是定义域为的偶函数,且在单调递减,则()A.B.C.D.2.抛物线上的一点M到焦点的距离为1,则点M的纵坐标是A. B. C. D.3.现有张不同的卡片,其中红色、黄色、蓝色、绿色卡片各张.从中任取张,要求这张卡片不能是同一种颜色,且红色卡片至多张.不同取法的种数为A. B. C. D.4.玲玲到保山旅游,打电话给大学同学姗姗,忘记了电话号码的后两位,只记得最后一位是6,8,9中的一个数字,则玲玲输入一次号码能够成功拨对的概率是()A.13 B.110 C.15.在复平面内,复数对应的点分别为.若为线段的中点,则点对应的复数是()A. B. C. D.6.若圆锥的高为,底面半径为,则此圆锥的表面积为()A. B. C. D.7.根据党中央关于“精准”脱贫的要求,我市某农业经济部门决定派出五位相关专家对三个贫困地区进行调研,每个地区至少派遣一位专家,其中甲、乙两位专家需要派遣至同一地区,则不同的派遣方案种数为A.18 B.24 C.28 D.368.已知函数,若方程有三个实数根,且,则的取值范围为()A. B.C. D.9.在中,,,,则等于()A. B. C. D.10.已知,为的导函数,则的图象是()A. B.C. D.11.某面粉供应商所供应的某种袋装面粉质量服从正态分布(单位:)现抽取500袋样本,X表示抽取的面粉质量在的袋数,则X的数学期望约为()附:若,则,A.171 B.239 C.341 D.47712.如图,在三棱锥中,面,是上两个三等分点,记二面角的平面角为,则()A.有最大值 B.有最大值 C.有最小值 D.有最小值二、填空题:本题共4小题,每小题5分,共20分。13.有3个兴趣小组,甲、乙两位同学各参加其中一个小组,且他们参加各个兴趣小组是等可能的,则甲、乙两位同学参加同一个兴趣小组的概率为_______.14.若的展开式的第项的二项式系数为,则其展开式中的常数项为________.15.东汉·王充《论衡·宜汉篇》:“且孔子所谓一世,三十年也.”,清代·段玉裁《说文解字注》:“三十年为一世.按父子相继曰世”.“一世”又叫“一代”,到了唐朝,为了避李世民的讳,“一世”方改为“一代”,当代中国学者测算“一代”平均为25年.另据美国麦肯锡公司的研究报告显示,全球家庭企业的平均寿命其实只有24年,其中只有约的家族企业可以传到第二代,能够传到第三代的家族企业数量为总量的,只有的家族企业在第三代后还能够继续为股东创造价值.根据上述材料,可以推断美国学者认为“一代”应为__________年.16.若x,y满足约束条件x+y-3≥0x-2y≤0,则函数z=x+2y的最小值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知曲线,直线(t为参数).(1)写出曲线C的参数方程,直线的普通方程;(2)过曲线C上任意一点作与直线夹角为30°的直线,交于点A,求的最大值与最小值.18.(12分)质检部门对某工厂甲、乙两个车间生产的12个零件质量进行检测.甲、乙两个车间的零件质量(单位:克)分布的茎叶图如图所示.零件质量不超过20克的为合格.(1)质检部门从甲车间8个零件中随机抽取4件进行检测,若至少2件合格,检测即可通过,若至少3件合格,检测即为良好,求甲车间在这次检测通过的条件下,获得检测良好的概率;(2)若从甲、乙两车间12个零件中随机抽取2个零件,用X表示乙车间的零件个数,求X的分布列与数学期望.19.(12分)已知,函数.(1)若,求的值;(2)若,求的单调递增区间.20.(12分)我校食堂管理人员为了解学生在校月消费情况,随机抽取了100名学生进行调查.如图是根据调査的结果绘制的学生在校月消费金额的频率分布直方图.已知,,金额段的学生人数成等差数列,将月消费金额不低于550元的学生称为“高消费群”.(1)求m,n值,并求这100名学生月消费金额的样本平均数.(同一组中的数据用该组区间的中点值作代表);(2)根据已知条件完成下面列联表,并判断能否有的把握认为“高消费群”与性别有关?高消费群非高消费群合计男女1050合计附:,其中0.100.050.0100.005K02.7063.8416.6357.87921.(12分)已知函数.(1)求函数的单调区间;(2)若,求证:.(为自然对数的底数)22.(10分)已知函数.(Ⅰ)讨论函数的单调性;(Ⅱ)当时,在定义域内恒成立,求实数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

由已知函数为偶函数,把,转化为同一个单调区间上,再比较大小.【题目详解】是R的偶函数,.,又在(0,+∞)单调递减,∴,,故选C.【题目点拨】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.2、B【解题分析】

由抛物线方程化标准方程为,再由焦半径公式,可求得。【题目详解】抛物线为,由焦半径公式,得。选B.【题目点拨】抛物线焦半径公式:抛物线,的焦半径公式。抛物线,的焦半径公式。抛物线,的焦半径公式。抛物线,的焦半径公式。3、C【解题分析】试题分析:3张卡片不能是同一种颜色,有两种情形:三种颜色或者两种颜色,如果是三种颜色,取法数为,如果是两种颜色,取法数为,所以取法总数为,故选C.考点:分类加法原理与分步乘法原理.【名师点晴】(1)对于一些比较复杂的既要运用分类加法计数原理又要运用分步乘法计数原理的问题,我们可以恰当地画出示意图或列出表格,使问题更加直观、清晰.(2)当两个原理混合使用时,一般是先分类,在每类方法里再分步.4、D【解题分析】

由分步计数原理和古典概型求得概率.【题目详解】由题意可知,最后一位有3种可能,倒数第2位有10种可能,根据分步计数原理总共情况为N=3×10=30,满足情况只有一种,概率为P=1【题目点拨】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,只有两个号码都拔完这种事情才完成,所以是分步计数原理.5、C【解题分析】

求出复数对应点的坐标后可求的坐标.【题目详解】两个复数对应的点坐标分别为,则其中点的坐标为,故其对应点复数为,故选:C.【题目点拨】本题考查复数的几何意义,注意复数对应的点是由其实部和虚部确定的,本题为基础题.6、B【解题分析】

根据圆锥的高和底面半径求出母线长,分别求出圆锥侧面积和底面积,加和得到结果.【题目详解】由题意可得圆锥的母线长为:圆锥侧面积为:;底面积为:圆锥表面积为:本题正确选项:【题目点拨】本题考查圆锥表面积的求解,关键是熟练掌握圆锥侧面积公式,属于基础题.7、D【解题分析】分析:按甲乙两人所派地区的人数分类,再对其他人派遣。详解:类型1:设甲、乙两位专家需要派遣的地区有甲乙两人则有,另外3人派往2个地区,共有18种。类型2:设甲、乙两位专家需要派遣的地区有甲乙丙三人则有,另外2人派往2个地区,共有18种。综上一共有36种,故选D点睛:有限制条件的分派问题,从有限制条件的入手,一般采用分步计数原理和分类计数原理,先分类后分步。8、B【解题分析】

先将方程有三个实数根,转化为与的图象交点问题,得到的范围,再用表示,令,利用导数法求的取值范围即可.【题目详解】已知函数,其图象如图所示:因为方程有三个实数根,所以,令,得,令,所以,所以,令,所以,令,得,当时,,当时,,所以当时,取得极小值.又,所以的取值范围是:.即的取值范围为.故选:B【题目点拨】本题主要考查函数与方程,导数与函数的单调性、极值最值,还考查了数形结合的思想和运算求解的能力,属于难题.9、D【解题分析】

根据正弦定理,将题中的数据代入,解之即可得到的大小.【题目详解】由正弦定理,得解之可得.故选:D.【题目点拨】本题主要考查解三角形中的正弦定理,已知两角和一边求另一边,通常用正弦定理求解.10、A【解题分析】

先求得函数的导函数,再对导函数求导,然后利用特殊点对选项进行排除,由此得出正确选项.【题目详解】依题意,令,则.由于,故排除C选项.由于,故在处导数大于零,故排除B,D选项.故本小题选A.【题目点拨】本小题主要考查导数的运算,考查函数图像的识别,属于基础题.11、B【解题分析】

先根据正态分布求得质量在的袋数的概率,再根据代数服从二项分布可得.【题目详解】,且,,,,而面粉质量在的袋数服从二项分布,即,则.故选:B【题目点拨】本题考查了二项分布,解题的关键是求出质量在的袋数的概率,属于基础题.12、B【解题分析】

将三棱锥放入长方体中,设,,,计算,,则,得到答案.【题目详解】将三棱锥放入长方体中,设,,,如图所示:过作平面与,与,连接,则为二面角的平面角,设为,则,,故.同理可得:设二面角的平面角为,.,当,即时等号成立.故选:.【题目点拨】本题考查了二面角,和差公式,均值不等式,意在考查学生的计算能力,空间想象能力和综合应用能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:由题意可知:.考点:随机事件的概率.14、【解题分析】

根据第项的二项式系数可知,求出,进而得到展开式的通项公式;令的幂指数为零可知;代入通项公式可求得常数项.【题目详解】由二项式定理可知,第项的二项式系数:,解得:展开式通项公式为:令,解得:常数项为:本题正确结果:【题目点拨】本题考查利用二项式定理求解指定项的系数的问题,关键是能够明确二项式系数的定义、二项展开式的通项公式的形式.15、20【解题分析】

设美国学者认为的一代为年,然后可得出寿命在、、、的家族企业的频率分别为、、、,然后利用平均数公式列方程解出的值,即可得出所求结果.【题目详解】设美国学者认为的一代为年,然后可得出寿命在、、、的家族企业的频率分别为、、、,则家族企业的平均寿命为,解得,因此,美国学者认为“一代”应为年,故答案为.【题目点拨】本题考查平均数公式的应用,解题的关键要审清题意,将题中一些关键信息和数据收集起来,结合相应的条件或公式列等式或代数式进行求解,考查运算求解能力,属于中等题.16、5.【解题分析】分析:作出约束条件所表示的平面区域,结合图象,得到目标函数经过点B时,目标函数取得最小值,即可求解.详解:作出约束条件所表示的平面区域,如图所示,目标函数z=x+2y,则y=-1由图象可知当取可行域内点B时,目标函数取得最小值,由x+y-3=0x-2y=0,解得B(1,2)此时函数的最小值为z=1+2×2=5.点睛:本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z=ax+by.求这类目标函数的最值常将函数z=ax+by转化为直线的斜截式:y=-abx+zb,通过求直线的截距zb的最值间接求出z的最值;(2)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(为参数),;(2)最小值为,最大值为.【解题分析】

(1)令,进而可求出曲线的参数方程;消去参数,整理即可.(2)根据题意可知是点P到直线的距离的两倍,利用点到直线的距离公式以及辅助角公式,借助三角函数的性质即可求解.【题目详解】(1)曲线(为参数),直线.(2)易知是点P到直线的距离的两倍,所以:,最小值为,最大值为.【题目点拨】本题考查了参数方程与普通方程的相互转化、点到直线的距离公式、辅助角公式以三角函数的最值,属于基础题.18、(1)(2)见解析【解题分析】分析:(1)设事件表示“件合格,件不合格”;事件表示“件合格,件不合格”;事件表示“件全合格”;事件表示“检测通过”;事件表示“检测良好”.通过,P(E)=P(B)+P(C),.求解概率即可.

(2)由题意知,的所有可能取值为0,1,2,求出概率得到分布列,然后求解期望即可.详解:(1)设事件表示“件合格,件不合格”;事件表示“件合格,件不合格”;事件表示“件全合格”;事件表示“检测通过”;事件表示“检测良好”.∴∴.故所求概率为.(2)可能取值为分布列为所以,.点睛:本题考查条件概率的应用,离散型随机变量的分布列以及期望的求法,考查分析问题解决问题的能力.19、(1);(2)【解题分析】

(1)由得,解出即可(2)用三角函数的和差公式和二倍角公式将化为,然后求出即可【题目详解】(1)又,.(2),,,的单调递增区间为【题目点拨】解决三角函数性质的有关问题时应先将函数化为基本型.20、(1),(2)没有90%的把握【解题分析】分析:(1)由题意知且,得,用每个矩形的中点值乘以面积求和可得平均值;(2)由题知数据完善2×2列联表,计算,查表下结论即可.详解:(1)由题意知且解得所求平均数为:(元)(2)根据频率分布直方图得到如下2×2列联表:高消费群非高消费群合计男153550女104050合计2575100根据上表数据代入公式可得所以没有90%的把握认为“高消费群”与性别有关.点睛:(1)本题主要考查频率分布直方图,考查独立性检验,意在考查学生对统计概率的基础知识的掌握情况.(2)频率分布直方图中,一般利用平均数的公式计算.其中代表第个矩形的横边的中点对应的数,代表第个矩形的面积.21、(1)当时,只有增区间为,当时,的增区间为,减区间为;(2)证明见解析.【解题分析】分析:⑴求出函数的导数,通过讨论的范围,求出函数的单调区间⑵问题等价于,令,根据函数的单调性即可判断出结果详解:(1),当时,,函数在单

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论