2024届北京市朝阳外国语高二数学第二学期期末经典模拟试题含解析_第1页
2024届北京市朝阳外国语高二数学第二学期期末经典模拟试题含解析_第2页
2024届北京市朝阳外国语高二数学第二学期期末经典模拟试题含解析_第3页
2024届北京市朝阳外国语高二数学第二学期期末经典模拟试题含解析_第4页
2024届北京市朝阳外国语高二数学第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京市朝阳外国语高二数学第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知(为虚单位),则复数在复平面上所对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知函数,,若方程在上有两个不等实根,则实数m的取值范围是()A. B. C. D.3.现有一条零件生产线,每个零件达到优等品的概率都为.某检验员从该生产线上随机抽检个零件,设其中优等品零件的个数为.若,,则()A. B. C. D.4.将7个座位连成一排,安排4个人就坐,恰有两个空位相邻的不同坐法有()A.240 B.480 C.720 D.9605.设,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件6.已知函数fx在R上可导,且fx=A.-2 B.2 C.4 D.-47.在极坐标系中,设圆与直线交于两点,则以线段为直径的圆的极坐标方程为()A. B.C. D.8.甲罐中有个红球,个白球和个黑球,乙罐中有个红球,个白球和个黑球,先从甲罐中随机取出一个球放入乙罐,分别以,,表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以表示由乙罐取出的球是红球的事件,下列结论中不正确的是()A.事件与事件不相互独立 B.、、是两两互斥的事件C. D.9.已知函数,若是函数的唯一极值点,则实数的取值范围是()A. B. C. D.10.一个圆锥被过其顶点的一个平面截去了较少的一部分几何体,余下的几何体的三视图如图,则余下部分的几何体的体积为()A. B. C. D.11.中,,是的中点,若,则().A. B. C. D.12.函数在定义域内可导,的图象如图所示,则导函数可能为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线与抛物线围成的封闭图形的面积等于___________.14.已知复数满足(是虚数单位),则______.15.已知集合,,则__________.16.已知函数是定义在上的奇函数,且函数的图象关于直线对称,当时,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,且.证明:(Ⅰ);(Ⅱ).18.(12分)已知分别为内角的对边,且.(1)求角A;(2)若,求的面积.19.(12分)己知数列的首项均为1,各项均为正数,对任意的不小于2的正整数n,总有,成立,(1)求数列的通项公式;(2)设数列的前n项和分别为,求所有使得等式成立的正整数m,的值.20.(12分)已知椭圆:的离心率为,焦距为.(1)求的方程;(2)若斜率为的直线与椭圆交于,两点(点,均在第一象限),为坐标原点,证明:直线,,的斜率依次成等比数列.21.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了月日至月日的每天昼夜温差与实验室每天每颗种子中的发芽数,得到如下资料:日期月日月日月日月日月日温差发芽数(颗)该农科所确定的研究方案是:先从这组数据中选取组,用剩下的组数据求线性回归方程,再对被选取的组数据进行检验.(1)求选取的组数据恰好是不相邻两天数据的概率;(2)若选取的是月日与月日的数据,请根据月日至月日的数据求出关于的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗.则认为得到的线性回归方程是可靠的.试问(2)中所得到的线性回归方程是可靠的吗?附:回归直线的斜率和截距的最小二乘估计公式分别为:,.22.(10分)某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为类同学),另外250名同学不经常参加体育锻炼(称为类同学),现用分层抽样方法(按类、类分二层)从该年级的学生中共抽查100名同学.(1)测得该年级所抽查的100名同学身高(单位:厘米)频率分布直方图如图,按照统计学原理,根据频率分布直方图计算这100名学生身高数据的平均数和中位数(单位精确到0.01);(2)如果以身高达到作为达标的标准,对抽取的100名学生,得到列联表:体育锻炼与身高达标列联表身高达标身高不达标合计积极参加体育锻炼60不积极参加体育锻炼10合计100①完成上表;②请问有多大的把握认为体育锻炼与身高达标有关系?参考公式:.参考数据:0.400.250.150.100.050.0250.0100.0050.0010.7081.3232.0722.7063.8415.0246.6357.87910.828

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

由得,再利用复数的除法法则将复数表示为一般形式,即可得出复数所表示的点所在的象限.【题目详解】由得,因此,复数在复平面上对应的点在第二象限,故选B.【题目点拨】本题考查复数的几何意义,考查复数对应的点所在的象限,解题的关键就是利用复数的四则运算将复数表示为一般形式,考查计算能力,属于基础题.2、C【解题分析】

对的范围分类,即可将“方程在上有两个不等实根”转化为“在内有实数解,且方程的正根落在内”,记,结合函数零点存在性定理即可列不等式组,解得:,问题得解.【题目详解】当时,可化为:整理得:当时,可化为:整理得:,此方程必有一正、一负根.要使得方程在上有两个不等实根,则在内有实数解,且方程的正根落在内.记,则,即:,解得:.故选C【题目点拨】本题主要考查了分类思想及转化思想,还考查了函数零点存在性定理的应用,还考查了计算能力及分析能力,属于难题.3、C【解题分析】

由求出的范围,再由方差公式求出值.【题目详解】∵,∴,化简得,即,又,解得或,∴,故选C.【题目点拨】本题考查概率公式与方差公式,掌握这两个公式是解题的关键,本题属于基础题.4、B【解题分析】12或67为空时,第三个空位有4种选择;23或34或45或56为空时,第三个空位有3种选择;因此空位共有2×4+4×3=5、A【解题分析】

利用不等式的性质和充分必要条件的定义进行求解;【题目详解】∵可得或,

∴由“”能推出“”,但由“”推不出“”,

∴“”是“”的充分非必要条件,

故选A.【题目点拨】本题主要考查不等式的基本性质和充分必要条件,属于基础题.6、A【解题分析】

求导后代入x=1可得关于f'1【题目详解】由fx=令x=1,则f'1本题正确选项:A【题目点拨】本题考查导数值的求解,关键是能够根据导数运算法则得到导函数的解析式,属于基础题.7、A【解题分析】试题分析:以极点为坐标原点,极轴为轴的正半轴,建立直角坐标系,则由题意,得圆的直角坐标方程,直线的直角坐标方程.由,解得或,所以,从而以为直径的圆的直角坐标方程为,即.将其化为极坐标方程为:,即故选A.考点:简单曲线的极坐标方程.8、D【解题分析】分析:由题意,,是两两互斥事件,条件概率公式求出,,对照选项即可求出答案.详解:由题意,,是两两互斥事件,,,,,而.所以D不正确.故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.9、A【解题分析】分析:由f(x)的导函数形式可以看出ex﹣kx=0在(0,+∞)无变号零点,令g(x)=ex﹣kx,g′(x)=ex﹣k,需要对k进行分类讨论来确定导函数为0时的根.详解:∵函数的定义域是(0,+∞),∴f′(x)=.x=1是函数f(x)的唯一一个极值点∴x=1是导函数f′(x)=0的唯一根.∴ex﹣kx=0在(0,+∞)无变号零点,令g(x)=ex﹣kxg′(x)=ex﹣k①k≤0时,g′(x)>0恒成立.g(x)在(0,+∞)时单调递增的g(x)的最小值为g(0)=1,g(x)=0无解②k>0时,g′(x)=0有解为:x=lnk0<x<lnk时,g′(x)<0,g(x)单调递减lnk<x时,g′(x)>0,g(x)单调递增∴g(x)的最小值为g(lnk)=k﹣klnk∴k﹣klnk>0∴k<e,由y=ex和y=ex图象,它们切于(1,e),综上所述,k≤e.故答案为:A.点睛:(1)本题主要考查利用导数研究函数的单调性和最值,考查利用导数研究函数的零点问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是分析转化ex﹣kx=0在(0,+∞)无变号零点.10、B【解题分析】分析:由三视图求出圆锥母线,高,底面半径.进而求出锥体的底面积,代入锥体体积公式,可得答案.详解:由已知中的三视图,圆锥母线l=圆锥的高h=,圆锥底面半径为r==2,由题得截去的底面弧的圆心角为120°,底面剩余部分为S=πr2+sin120°=π+,故几何体的体积为:V=Sh=×(π+)×2=.故答案为:B.点睛:(1)本题主要考查三视图找原图,考查空间几何体的体积的计算,意在考查学生对这些知识的掌握水平和空间想象能力基本的计算能力.(2)解答本题的关键是弄清几何体的结构特征并准确计算各几何要素.11、D【解题分析】

作出图象,设出未知量,在中,由正弦定理可得,进而可得,在中,还可得,建立等式后可得,再由勾股定理可得,即可得出结论.【题目详解】解:如图,设,,,,在中,由正弦定理可得,代入数据解得,故,而在中,,故可得,化简可得,解之可得,再由勾股定理可得,联立可得,故在中,,故选:D.【题目点拨】本题考查正弦定理的应用,涉及三角函数的诱导公式以及勾股定理的应用,属于中档题.12、D【解题分析】

根据函数的单调性判断出导函数函数值的符号,然后结合所给的四个选项进行分析、判断后可得正确的结论.【题目详解】由图象可知,函数在时是增函数,因此其导函数在时,有(即函数的图象在轴上方),因此排除A、C.从原函数图象上可以看出在区间上原函数是增函数,所以,在区间上原函数是减函数,所以;在区间上原函数是增函数,所以.所以可排除C.故选D.【题目点拨】解题时注意导函数的符号与函数单调性之间的关系,即函数递增(减)时导函数的符号大(小)于零,由此可判断出导函数图象与x轴的相对位置,从而得到导函数图象的大体形状.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】直线与抛物线的交点坐标为,据此可得:直线与抛物线围成的封闭图形的面积等于:.14、【解题分析】

利用复数的除法运算化简,进而求得.【题目详解】依题意,故故答案为:.【题目点拨】本小题主要考查复数除法运算,考查复数的模的计算,属于基础题.15、【解题分析】分析:直接利用交集的定义求解即可.详解:因为集合,,所以由交集的定义可得,故答案为点睛:本题考查集合的交集的定义,意在考查对基本运算的掌握情况,属于简单题.16、【解题分析】分析:详解:函数是定义在上的奇函数,故函数)关于(2,0)中心对称,函数的图象关于直线对称,得到函数的周期为:4,故答案为:0.点睛:这个题目考查了函数的对称性和周期性,对于抽象函数,且要求函数值的题目,一般是研究函数的单调性和奇偶性,通过这些性质将要求的函数值转化为已知表达式的区间上,将转化后的自变量代入解析式即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)详见解析;(Ⅱ)详见解析.【解题分析】

(Ⅰ)根据均值不等式可以证明;(Ⅱ)根据均值不等式和已知条件的灵活应用可以证明.【题目详解】证明Ⅰ,b,,且,,,当且仅当时,等号成立

Ⅱ,,,,,【题目点拨】本题主要考查不等式的证明,均值不等式是常用工具,侧重考查逻辑推理的核心素养.18、(1);(2).【解题分析】

由正弦定理可得,结合,可求,结合范围,可求.由已知利用余弦定理可得,解得c的值,根据三角形面积公式即可计算得解.【题目详解】解:.由正弦定理可得:,,,即,,,,,由余弦定理,可得:,可得:,解得:,负值舍去,【题目点拨】本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.19、(1),;(2),.【解题分析】

(1)通过因式分解可判断为等差数列,于是可得通项,通过等比中项性质可知为等比数列,于是可求通项;(2)计算出前n项和,化简式子,通过分解因式找出因子,然后利用正整数解可求得,.【题目详解】(1)由于,整理得,而,故,所以为等差数列,所以;由于,可知为等比数列,,所以;(2)由(1)可得,,所以转化为,整理即,要m,都为正整数,则都分别是2的倍数,且,故2的幂指数中,只有4与16相差12,故,故,此时.【题目点拨】本题主要考查等差数列与等比数列的通项公式,前n项和的计算,意在考查学生的转化能力,分析能力,计算能力,难度中等.20、(1).(2)见解析.【解题分析】

(1)根据题中条件,得到,再由,求解,即可得出结果;(2)先设直线的方程为,,,联立直线与椭圆方程,结合判别式、韦达定理等,表示出,只需和相等,即可证明结论成立.【题目详解】(1)由题意可得,解得,又,所以椭圆方程为.(2)证明:设直线的方程为,,,由,消去,得则,且,故即直线,,的斜率依次成等比数列.【题目点拨】本题主要考查求椭圆的标准方程,以及椭圆的应用,熟记椭圆的标准方程以及椭圆的简单性质即可,属于常考题型.21、(1);(2);(3)见解析【解题分析】分析:(1)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是可能出现的,满足条件的事件包括的基本事件有6种.根据等可能事件的概率做出结果.

(2)根据所给的数据,先求出,,即求出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.

(3)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.详解:(1)设“选取的2组数据恰好是不相邻两天的数据”为事件A.从5组数据中选取2组数据共有10种情况:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论