版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省深圳市卓识教育深圳实验部数学高二下期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某科研单位准备把7名大学生分配到编号为1,2,3的三个实验室实习,若要求每个实验室分配到的大学生人数不小于该实验室的编号,则不同的分配方案的种数为()A.280 B.455 C.355 D.3502.设函数fx=x3+a-1x2A.y=-2x B.y=-x C.y=2x D.y=x3.有一个奇数列,现在进行如下分组:第一组含一个数;第二组含二个数;第三组含有三个数;第四组数有试观察每组内各数之和与组的编号数有什么关系()A.等于 B.等于 C.等于 D.等于4.某锥体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积最小值为()A. B. C.1 D.25.已知双曲线C:x216-yA.6x±y=0 B.C.x±2y=0 D.2x±y=06.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为()A. B. C. D.7.曲线的极坐标方程化为直角坐标为()A. B.C. D.8.平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为()A.n+1 B.2n C. D.n2+n+19.已知x1+i=1-yi,其中x,y是实数,i是虚数单位,则x+yiA.1+2iB.1-2iC.2+iD.2-i10.已知定义域为正整数集的函数满足,则数列的前项和为()A. B. C. D.11.已知,,则等于()A. B. C. D.12.若是极坐标系中的一点,则四个点中与点重合的点有()A.1个 B.2个 C.3个 D.4个二、填空题:本题共4小题,每小题5分,共20分。13.已知函数存在极小值,且对于的所有可能取值,的极小值恒大于0,则的最小值为__________.14.已知复数(i为虚数单位),则复数z的模为_____.15.设定义在R上的函数f(x)同时满足以下条件:①f(x)+f(-x)=0;②f(-x-2)+f(x)=0;③当x∈[0,1)时,f(x)=lg(x+1).则f()+lg14=________.16.某学校为了了解住校学生每天在校平均开销情况,随机抽取了名学生,他们的每天在校平均开销都不低于20元且不超过60元,其频率分布直方图如图三所示,则其中每天在校平均开销在元的学生人数为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2018年俄罗斯世界杯激战正酣,某校工会对全校教职工在世界杯期间每天收看比赛的时间作了一次调查,得到如下频数分布表:收看时间(单位:小时)14282012(1)若将每天收看比赛转播时间不低于3小时的教职工定义为“球迷”,否则定义为“非球迷”,请根据频数分布表补全列联表:男女合计球迷40非球迷合计并判断能否有90%的把握认为该校教职工是否为“球迷”与“性别”有关;(2)在全校“球迷”中按性别分层抽样抽取6名,再从这6名“球迷”中选取2名世界杯知识讲座.记其中女职工的人数为,求的分布列与数学期望.附表及公式:0.150.100.050.0252.0722.7063.8415.024.18.(12分)已知数列的前项和为,且,.(1)求数列的通项公式;(2)求数列的前项和为.19.(12分)已知函数.(1)求的单调区间;(2)求函数在上的最大值和最小值;20.(12分)如图,已知三棱柱的侧棱与底面垂直,,分别是的中点.(1)求异面直线与所成角的余弦值;(2)求二面角的余弦值.21.(12分)某技术人员在某基地培育了一种植物,一年后,该技术人员从中随机抽取了部分这种植物的高度(单位:厘米)作为样本(样本容量为)进行统计,绘制了如下频率分布直方图,已知抽取的样本植物高度在内的植物有8株,在内的植物有2株.(Ⅰ)求样本容量和频率分布直方图中的,的值;(Ⅱ)在选取的样本中,从高度在内的植物中随机抽取3株,设随机变量表示所抽取的3株高度在内的株数,求随机变量的分布列及数学期望;(Ⅲ)据市场调研,高度在内的该植物最受市场追捧.老王准备前往该基地随机购买该植物50株.现有两种购买方案,方案一:按照该植物的不同高度来付费,其中高度在内的每株10元,其余高度每株5元;方案二:按照该植物的株数来付费,每株6元.请你根据该基地该植物样本的统计分析结果为决策依据,预测老王采取哪种付费方式更便宜?22.(10分)在某中学高中某学科竞赛中,该中学100名考生的参赛成绩统计如图所示.(1)求这100名考生的竞赛平均成绩(同一组中数据用该组区间中点作代表);(2)记70分以上为优秀,70分及以下为合格,结合频率分布直方图完成下表,并判断是否有99%的把握认为该学科竞赛成绩与性别有关?合格优秀合计男生18女生25合计100附:.0.0500.0100.0053.8416.6357.879
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
每个实验室人数分配有三种情况,即①1,2,4;②1,3,3;③2,2,3;针对三种情况进行计算组合即可【题目详解】每个实验室人数分配有三种情况,即1,2,4;1,3,3;2,2,3.当实验室的人数为1,2,4时,分配方案有种;当实验室的人数为1,3,3时,分配方案有种;当实验室的人数为2,2,3时,分配方案有种.故不同的分配方案有455种.选B.【题目点拨】本题考查排列组合的问题,解题注意先分类即可,属于基础题2、D【解题分析】
分析:利用奇函数偶次项系数为零求得a=1,进而得到f(x)的解析式,再对f(x)求导得出切线的斜率k,进而求得切线方程.详解:因为函数f(x)是奇函数,所以a-1=0,解得a=1,所以f(x)=x3+x所以f'(0)=1,f(0)=0,所以曲线y=f(x)在点(0,0)处的切线方程为y-f(0)=f'(0)x,化简可得y=x,故选D.点睛:该题考查的是有关曲线y=f(x)在某个点(x0,f(x03、B【解题分析】第组有个数,第组有个数,所以前组的数字个数是,那么前组的数字和是,所以前组的数字个数是,那么前组的数字和是,那么第组的数字和是,故选B.4、B【解题分析】
锥体高一定,底面积最小时体积最小,底面图形可以是圆,等腰直角三角形,正方形,等腰直角三角形是面积最小,计算得到答案.【题目详解】锥体高一定,底面积最小时体积最小,底面图形可以是圆,等腰直角三角形,正方形,等腰直角三角形是面积最小故答案选B【题目点拨】本题考查了锥体的体积,判断底面是等腰直角三角形是解题的关键.5、C【解题分析】
根据双曲线的性质,即可求出。【题目详解】令x216双曲线C的渐近线方程为x±2y=0,故选C。【题目点拨】本题主要考查双曲线渐近线方程的求法。6、C【解题分析】试题分析:将5张奖票不放回地依次取出共有种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票.共有种取法,∴考点:古典概型及其概率计算公式7、B【解题分析】
利用直角坐标与极坐标的互化公式,即可得到答案.【题目详解】由曲线的极坐标方程,两边同乘,可得,再由,可得:,所以曲线的极坐标方程化为直角坐标为故答案选B【题目点拨】本题考查把极坐标转化为直角坐标方程的方法,熟练掌握直角坐标与极坐标的互化公式是解题的关键,属于基础题.8、C【解题分析】1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……,n条直线最多可将平面分成1+(1+2+3+…+n)=1+=个区域,选C.9、D【解题分析】∵x1+i=x(1-i)10、A【解题分析】分析:通过求出,再利用等差数列的求和公式即可求得答案.详解:当时,有;当时,有;当时,有;…...,.故答案为:A.点睛:本题主要考查了数列求和以及通项公式的求法,考查计算能力与分析能力,属于中档题.11、B【解题分析】
根据余弦的半角公式化简、运算,即可求解,得到答案.【题目详解】由题意,可知,则,又由半角公式可得,故选B.【题目点拨】本题主要考查了三角函数的化简、求值问题,其中解答中熟练应用余弦函数的半角公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.12、C【解题分析】
分别将各点化为直角坐标即可判断【题目详解】P(2,)化直角坐标为,即为同理化直角坐标分别为则与点P重合的点有3个.故选:C.【题目点拨】本题考查了极坐标与直角坐标互化公式,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】因,故有解,即有解.令取得极小值点为,则,则函数的极小值为,将代入可得,由题设可知,令,则,由,即当时,函数取最小值,即,也即,所以,即,应填答案.点睛:本题是一道较为困难的试题.求解思路是先确定极小值的极值点为,则,进而求出函数的极小值,通过代入消元将未知数消掉,然后求函数的最小值为,从而将问题转化为,然后通过解不等式求出即.14、【解题分析】
直接利用复数代数形式的四则运算化简复数z,再由复数模的公式计算得答案.【题目详解】,则复数z的模为.故答案为.【题目点拨】本题考查了复数代数形式的运算,考查了复数模的求法,是基础题.15、1.【解题分析】分析:由①②知函数f(x)是周期为2的奇函数,由此即可求出答案.详解:由①②知函数f(x)是周期为2的奇函数,于是f()=f=f=-f,又当x∈[0,1)时,f(x)=lg(x+1),f()=-f=-lg=lg,故f()+lg14=lg+lg14=lg10=1.故答案为:1.点睛:本题考查函数周期性的使用,函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值.16、1【解题分析】分析:由频率分布直方图,得每天在校平均开销在[50,60]元的学生所点的频率为0.3,由此能求出每天在校平均开销在[50,60]元的学生人数.详解:由频率分布直方图,得:每天在校平均开销在[50,60]元的学生所点的频率为:1﹣(0.01+0.024+0.036)×10=0.3∴每天在校平均开销在[50,60]元的学生人数为500×0.3=1.故答案为1点睛:本题考查频率分布直方图的应用,考查频数的求法,考查频率分布直方图等基础知识,意在考查学生对这些基础知识的掌握能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有(2)见解析【解题分析】分析:(1)根据题中数据填写列联表,由此计算观测值,对照临界值得出结论;(2)由题意知抽取的6名“体育达人”中有4名男职工,2名女职工,所以的可能取值为0,1,2,求出相对应的概率值,即可求得答案.详解:(1)由题意得下表:的观测值为.所以有的把握认为该校教职工是“体育达人”与“性别”有关.(2)由题意知抽取的6名“体育达人”中有4名男职工,2名女职工,所以的可能取值为0,1,2.且,,,所以的分布列为.点睛:解决独立性检验应用问题的方法解决一般的独立性检验问题,首先由所给2×2列联表确定a,b,c,d,n的值,然后根据统计量的计算公式确定的值,最后根据所求值确定有多大的把握判定两个变量有关联.18、(1)(2)【解题分析】试题分析:(1)利用和项与通项关系,当时,,将条件转化为项之间递推关系:,再构造等比数列:,根据等比数列定义及通项公式求得,即得;注意验证当时是否满足题意,(2)由于可裂成相邻两项之差:,所以利用裂项相消法求数列的前项和.试题解析:(Ⅰ)因为,故当时,;当时,,两式对减可得;经检验,当时也满足;故,故数列是以3为首项,3为公比的等比数列,故,即.(Ⅱ)由(Ⅰ)可知,,故.点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如或.19、(1)在上单调递增,在上单调递减.(2)最大值为0,最小值为.【解题分析】
通过求导函数判断函数单调性,进而判断函数在的最值.【题目详解】(1)的定义域为.对求导得,因函数定义域有,故,由.∴在上单调递增,在上单调递减.(2)由(1)得在上单调递增,在上单调递减,∴在上的最大值为.又,,且,∴在上的最小值为,∴在上的最大值为0,最小值为.【题目点拨】此题是函数单调性和函数最值的常见题,通常利用导数来处理.20、(1);(2).【解题分析】
(1)以分别为轴建立空间直角坐标系,计算直线对应向量,根据向量夹角公式得到答案.(2)分别计算两个平面的法向量,利用法向量的夹角计算二面角余弦值.【题目详解】(1)如图,以分别为轴建立空间直角坐标系,则,,异面直线与所成角的余弦值为.(2)平面的一个法向量为.设平面的一个法向量为,由得,,不妨取则,,,二面角的余弦值为.【题目点拨】本题考查了空间直角坐标系的应用,求异面直线夹角和二面角,意在考查学生的计算能力和空间想象能力.21、(Ⅰ),,;(Ⅱ)分布列见解析,;(Ⅲ)方案一付费更便宜.【解题分析】
(Ⅰ)由题目条件及频率分布直方图能求出样本容量n和频率分布直方图中的x,y.(Ⅱ)由题意可知,高度在[80,90)内的株数为5,高度在[90,100]内的株数为2,共7株.抽取的3株中高度在[80,90)内的株数X的可能取值为1,2,3,分别求出相应的概率,由此能求出X的分布列和E(X).(Ⅲ)根据(Ⅰ)所得结论,分别计算按照方案一购买应付费和按照方案二购买应付费,比较结果即可得按照方案一付费更便宜.【题目详解】(Ⅰ)由题意可知,样本容量,,.(Ⅱ)由题意可知,高度在[80,90)内的株数为5,高度
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 矿山开采地面施工合同
- 文化用品招投标规则摘要
- 工业园区电力事故预防措施
- 二零二四年度技术研发合作合同标的详细规范3篇
- 市场调研服务招投标合同范本
- 铁路道口交通警示信号
- 互联网企业招投标规定规章制度
- 临时救援用电施工协议
- 婚纱摄影积分优惠方案
- 财务报告编制实施细则
- 教育心理学-形考作业3(第七至九章)-国开-参考资料
- 第18课《我的白鸽》公开课一等奖创新教学设计
- 2024-2030年中国短视频行业发展现状调查与未来前景趋势研究研究报告
- 2024年全国网络安全行业职业技能大赛(网络安全管理员)考试题库-下(多选、判断题)
- 监理单位班组作业标准化监理实施细则
- Unit5写作课件沪教牛津版(2024)七年级英语上册
- 人教版(2024新版)七年级上册道德与法治期末复习知识点考点提纲
- 北京版小学英语1至6年级词汇
- 11.2 树立正确的人生目标 课件-2024-2025学年统编版道德与法治七年级上册
- 八年级历史上册 第8课 辛亥革命教学设计 中华书局版
- (2024版)中国血脂管理指南
评论
0/150
提交评论