上海市十二校2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第1页
上海市十二校2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第2页
上海市十二校2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第3页
上海市十二校2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第4页
上海市十二校2024届高二数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市十二校2024届高二数学第二学期期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的单调增区间是()A. B. C. D.2.在中,角的对边分别是,若,则的值为()A.1 B. C. D.3.已知,则下列不等式正确的是()A. B.C. D.4.用数学归纳法证明“当为正奇数时,能被整除”,第二步归纳假设应该写成()A.假设当时,能被整除B.假设当时,能被整除C.假设当时,能被整除D.假设当时,能被整除5.在直角坐标系中,一个质点从出发沿图中路线依次经过,,,,按此规律一直运动下去,则()A.1006 B.1007 C.1008 D.10096.下列说法正确的个数有()①用刻画回归效果,当越大时,模型的拟合效果越差;反之,则越好;②命题“,”的否定是“,”;③若回归直线的斜率估计值是,样本点的中心为,则回归直线方程是;④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”。A.1个 B.2个 C.3个 D.4个7.在《九章算术》中,将四个面都为直角三角形的三棱锥称为“鳖臑”.那么从长方体八个顶点中任取四个顶点,则这四个顶点组成的几何体是“鳖臑”的概率为()A. B. C. D.8.函数f(x)=(x2﹣2x)ex的图象可能是()A. B.C. D.9.已知一袋中有标有号码、、的卡片各一张,每次从中取出一张,记下号码后放回,当三种号码的卡片全部取出时即停止,则恰好取次卡片时停止的概率为()A. B. C. D.10.设,,都为大于零的常数,则的最小值为()。A. B. C. D.11.已知,则不等式的解集为()A. B. C. D.12.已知X的分布列为X-101P设Y=2X+3,则E(Y)的值为A. B.4 C.-1 D.1二、填空题:本题共4小题,每小题5分,共20分。13.己知函数,则不等式的解集是_______.14.设函数的导数为,且,则.15.若复数满足,则的实部是_________.16.已知二项式展开式的第项与第项之和为零,那么等于____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列,的公比分别为,.(1)若,,求数列的前项和;(2)若数列,满足,求证:数列不是等比数列.18.(12分)为了响应党的十九大所提出的教育教学改革,某校启动了数学教学方法的探索,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班40人,甲班按原有传统模式教学,乙班实施自主学习模式.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间,,,,进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.0.100.050.0252.7063.8415.024(1)完成表格,并判断是否有以上的把握认为“数学成绩优秀与教学改革有关”;甲班乙班合计大于等于80分的人数小于80分的人数合计(2)从乙班,,分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.19.(12分)2018年6月14日,国际足联世界杯足球赛在俄罗斯举行了第21届赛事.虽然中国队一如既往地成为了看客,但中国球迷和参赛的32支队伍所在国球迷一样,对本届球赛热情似火,在6月14日开幕式的第二天,我校足球社团从全校学生中随机抽取了120名学生,对是否收看开幕式情况进行了问卷调查,统计数据如下:收看没收看男生6020女生2020(1)根据上表说明,能否有99%的把握认为,是否收看开幕式与性别有关?(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加志愿者宣传活动.(i)问男、女学生各选取了多少人?(ⅱ)若从这12人中随机选取3人到校广播站开展足球项目的宣传介绍,设选取的3人中女生人数为X,写出X的分布列,并求.附:,其中.0.100.050.0250.010.0052.7063.8415.0246.6357.87920.(12分)已知函数fx(1)讨论函数fx(2)当n∈N*时,证明:21.(12分)伴随着智能手机的深入普及,支付形式日渐多样化,打破了传统支付的局限性和壁垒,有研究表明手机支付的使用比例与人的年龄存在一定的关系,某调研机构随机抽取了50人,对他们一个月内使用手机支付的情况进行了统计,如表:年龄(单位:岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)人数510151055使用手机支付人数31012721(1)若以“年龄55岁为分界点”,由以上统计数据完成下面的2×2列联表,并判断是否有99%的把握认为“使用手机支付”与人的年龄有关;年龄不低于55岁的人数年龄低于55岁的人数合计使用不适用合计(2)若从年龄在[55,65),[65,75)内的被调查人中各随机选取2人进行追踪调查,记选中的4人中“使用手机支付”的人数为ξ,求随机变量ξ的分布列与数学期望;参考数据如下:0.050.0100.001k03.8416.63510.828参考格式:,其中22.(10分)在直角坐标系xOy中,已知倾斜角为α的直线l过点A(2,1).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系曲线C的极坐标方程为ρ=2sinθ,直线l与曲线C分别交于P,Q两点.(1)写出直线l的参数方程和曲线C的直角坐标方程.(2)求|AP|•|AQ|的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

求导,并解不等式可得出函数的单调递增区间。【题目详解】,,令,得或,因此,函数的单调递增区间为,,故选:A。【题目点拨】本题考查利用导数求函数的单调区间,求函数单调区间有以下几种方法:(1)基本性质法;(2)图象法;(3)复合函数法;(4)导数法。同时要注意,函数同类单调区间不能合并,中间用逗号隔开。2、C【解题分析】

在中利用正弦定理和二倍角公式能求出角,再依据余弦定理列出关于角的关系式,化简即得.【题目详解】∵,∴由正弦定理可得,即.由于,∴.∵,∴.又,由余弦定理可得,∴.故选C.【题目点拨】本题主要考查正余弦定理解三角形以及三角恒等变换.3、C【解题分析】

考虑到中不等号方向,先研究C,D中是否有一个正确。构造函数是增函数,可得当时,有,所以作差,,对可分类,和【题目详解】令,显然单调递增,所以当时,有,所以另一方面因为所以,当时,,当时,(由递增可得),∴,C正确。故选:C。【题目点拨】本题考查判断不等式是否成立,考查对数函数的性质。对于不等式是否成立,有时可用排除法,即用特例,说明不等式不成立,从而排除此选项,一直到只剩下一个正确选项为止。象本题中有两个选项结论几乎相反(或就是相反结论时),可考虑先判断这两个不等式中是否有一个为真。如果这两个都为假,再考虑两个选项。4、D【解题分析】注意n为正奇数,观察第一步取到1,即可推出第二步的假设.解:根据数学归纳法的证明步骤,注意n为奇数,所以第二步归纳假设应写成:假设n=2k-1(k∈N*)正确,再推n=2k+1正确;故选D.本题是基础题,不仅注意第二步的假设,还要使n=2k-1能取到1,是解好本题的关键.5、D【解题分析】

分析:由题意得,即,观察前八项,得到数列的规律,求出即可.详解:由直角坐标系可知,,即,由此可知,数列中偶数项是从1开始逐渐递增的,且都等于所在的项数除以2,则,每四个数中有一个负数,且为每组的第三个数,每组的第一个数为其组数,每组的第一个数和第三个数是互为相反数,因为,则,,故选D.点睛:本题考查了归纳推理的问题,关键是找到规律,属于难题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.6、C【解题分析】分析:结合相关系数的性质,命题的否定的定义,回归方程的性质,推理证明即可分析结论.详解:①为相关系数,相关系数的结论是:越大表明模拟效果越好,反之越差,故①错误;②命题“,”的否定是“,”;正确;③若回归直线的斜率估计值是,样本点的中心为,则回归直线方程是;根据回归方程必过样本中心点的结论可得③正确;④综合法证明数学问题是“由因索果”,分析法证明数学问题是“执果索因”。根据综合法和分析法定义可得④的描述正确;故正确的为:②③④故选C.点睛:考查命题真假的判断,对命题的逐一分析和对应的定义,性质的理解是解题关键,属于基础题.7、C【解题分析】

本题是一个等可能事件的概率,从正方体中任选四个顶点的选法是,四个面都是直角三角形的三棱锥有4×6个,根据古典概型的概率公式进行求解即可求得.【题目详解】由题意知本题是一个等可能事件的概率,从长方体中任选四个顶点的选法是,以A为顶点的四个面都是直角三角形的三棱锥有:共个.同理以为顶点的也各有个,但是,所有列举的三棱锥均出现次,四个面都是直角三角形的三棱锥有个,所求的概率是故选:C.【题目点拨】本题主要考查了古典概型问题,解题关键是掌握将问题转化为从正方体中任选四个顶点问题,考查了分析能力和计算能力,属于中档题.8、B【解题分析】

根据函数值的正负,以及单调性,逐项验证.【题目详解】,当或时,,当时,,选项不正确,,令,当或,当,的递增区间是,,递减区间是,所以选项不正确,选项正确.故选:B.【题目点拨】本题考查函数图像的识别,考查函数的单调性和函数值,属于基础题.9、B【解题分析】分析:由题意结合排列组合知识和古典概型计算公式整理计算即可求得最终结果.详解:根据题意可知,取5次卡片可能出现的情况有种;由于第5次停止抽取,所以前四次抽卡片中有且只有两种编号,所以总的可能有种;所以恰好第5次停止取卡片的概率为.本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.10、B【解题分析】

由于,乘以,然后展开由基本不等式求最值,即可求解.【题目详解】由题意,知,可得,则,所以当且仅当,即时,取等号,故选:B.【题目点拨】本题主要考查了利用基本不等式求最值问题,其中解答中根据题意给要求的式子乘以是解决问题的关键,着重考查了分析问题和解答问题的能力,属于中档题.11、A【解题分析】

利用导数判断出在上递增,而,由此将不等式转化为,然后利用单调性列不等式,解不等式求得的取值范围.【题目详解】由,故函数在上单调递增,又由,故不等式可化为,,得,解得.故选A.【题目点拨】本小题主要考查利用导数研究函数的单调性,考查对数不等式的解法,属于基础题.12、A【解题分析】由条件中所给的随机变量的分布列可知EX=﹣1×+0×+1×=﹣,∵E(2X+3)=2E(X)+3,∴E(2X+3)=2×(﹣)+3=.故答案为:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据题意,分析可得函数f(x)=x2(2x﹣2﹣x)为奇函数且在R上是增函数,则不等式f(2x+1)+f(1)0可以转化为2x+1﹣1,解可得x的取值范围,即可得答案.【题目详解】根据题意,对于函数f(x)=x2(2x﹣2﹣x),有f(﹣x)=(﹣x)2(2﹣x﹣2x)=﹣x2(2x﹣2﹣x)=﹣f(x),则函数f(x)为奇函数,函数f(x)=x2(2x﹣2﹣x),其导数f′(x)=2x(2x﹣2﹣x)+x2•ln2(2x+2﹣x)>0,则f(x)为增函数;不等式f(2x+1)+f(1)0⇒f(2x+1)﹣f(1)⇒f(2x+1)f(﹣1)⇒2x+1﹣1,解可得x﹣1;即f(2x+1)+f(1)0的解集是[﹣1,+∞);故答案为[﹣1,+∞).【题目点拨】本题主要考查不等式的求解,利用条件判断函数的奇偶性和单调性,以及利用奇偶性和单调性的性质将不等式进行转化是解决本题的关键.14、【解题分析】试题分析:,而,所以,,故填:.考点:导数15、【解题分析】

由得出,再利用复数的除法法则得出的一般形式,可得出复数的实部.【题目详解】,,因此,复数的实部为,故答案为.【题目点拨】本题考查复数的概念,同时也考查了复数的除法,解题时要利用复数的四则运算法则将复数表示为一般形式,考查计算能力,属于基础题.16、1【解题分析】

用项式定理展开式通项公式求得第4项和第5项,由其和为0求得.【题目详解】二项式展开式的第项为,第5项为,∴,解得.故答案为:1.【题目点拨】本题考查二项式定理,考查二项展开式的通项公式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解题分析】

(1)分别求出,再得,仍然是等比数列,由等比数列前项和公式可得;(2)由已知,假设是等比数列,则,代入求得,与已知矛盾,假设错误.【题目详解】(1),,,则;证明:(2)假设数列是等比数列,可得,设数列的公比为,可得,因此有,即,因此有,与已知条件中不相等矛盾,因此假设不成立,故数列不是等比数列.【题目点拨】本题考查等比数列的通项公式,前项和公式,考查否定性命题的证明.证明否定性命题可用反证法,假设结论的反面成立,结合已知推理出矛盾的结论,说明假设错误.也可直接证明,即能说明不是等比数列.18、(1)表格见解析,有;(2)分布列见解析,【解题分析】

(1)完善列联表,计算,得到答案.(2)依题意随机变量的所有可能取值为0,1,2,3,计算概率得到分布列,计算数学期望得到答案.【题目详解】(1)甲班乙班合计大于等于80分的人数122032小于80分的人数282048合计404080依题意得.有以上的把握认为“数学成绩优秀与教学改革有关”.(2)从乙班,,分数段中抽人数分别为2、3、2.依题意随机变量的所有可能取值为0,1,2,3.,,,,0123.【题目点拨】本题考查了独立性检验,分布列,数学期望,意在考查学生的计算能力和应用能力.19、(1)有(2)(i)男生有9人,女生有3人.(ⅱ)见解析,【解题分析】

(1)套用公式,算出的值与6.635比较大小,即可得到本题答案;(2)(i)由男女的比例为3:1,即可得到本题答案;(ii)根据超几何分布以及离散型随机变量的均值公式,即可得到本题答案.【题目详解】(1)因为,所以有99%的把握认为,是否收看开幕式与性别有关.(2)(ⅰ)根据分层抽样方法得,男生人,女生人,所以选取的12人中,男生有9人,女生有3人.(ⅱ)由题意可知,X的可能取值有0,1,2,3.,,,X0123P∴.【题目点拨】本题主要考查分层抽样,独立性检验的应用和超几何分布以及其分布列均值的求法,考查学生的运算求解能力.20、(1)答案不唯一,具体见解析(2)见解析【解题分析】

(1)利用导数求函数单调区间的套路,确定定义域,求导,解含参的不等式;(2)由(1)赋值放缩可以得到一函数不等式,再赋值将函数不等式转化为数列不等式,采用累加法即可证明不等式。【题目详解】(1)解:因为f'x①当a≤0时,总有f'x所以fx在0,+∞上单调递减.②当a>0时,令2ax-1x>0故x>12a时,f'x>0,所以fx同理2ax-1x<0时,有f'x<0,所以(2)由(1)知当a>0时,fx若fxmin=0,则1因为fx≥fx当n∈N*时,取x=n+1所以2故22【题目点拨】本题主要考查了导数在函数中的应用,利用导数求函数的单调区间,涉及到含参不等式的讨论,以及利用放缩法证明数列不等式,意在考查学生逻辑推理和数学运算能力。21、(1)详见解析;(2)详见解析.【解题分析】

(1)根据题中的数据补充列联表,计算出的值,根据临界值表找出犯错误的概率,于此可对题中的问题下结论;(2)先确定年龄在和的人数,可得知的取值有、、、,然后利用超几何分布列的概率公式计算概率,列出随机变量的分布列,并计算出的数学期望。【题目详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论