山西西安博爱国际学校2024届数学高二第二学期期末质量跟踪监视试题含解析_第1页
山西西安博爱国际学校2024届数学高二第二学期期末质量跟踪监视试题含解析_第2页
山西西安博爱国际学校2024届数学高二第二学期期末质量跟踪监视试题含解析_第3页
山西西安博爱国际学校2024届数学高二第二学期期末质量跟踪监视试题含解析_第4页
山西西安博爱国际学校2024届数学高二第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西西安博爱国际学校2024届数学高二第二学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设随机变量,若,则等于()A. B. C. D.2.已知函数在区间内没有极值点,则的取值范围为A. B. C. D.3.某校学生一次考试成绩X(单位:分)服从正态分布N(110,102),从中抽取一个同学的成绩ξ,记“该同学的成绩满足90<ξ≤110”为事件A,记“该同学的成绩满足80<ξ≤100”为事件B,则在A事件发生的条件下B事件发生的概率P(B|A)=()附:X满足P(μ﹣σ<X≤μ+σ)=0.68,P(μ﹣2σ<X≤μ+2σ)=0.95,P(μ﹣3σ<ξ≤μ+3σ)=0.1.A. B. C. D.4.在正方体中,与平面所成角的正弦值为()A. B. C. D.5.已知函数,且,则曲线在处的切线方程为()A. B.C. D.6.已知双曲线上有一个点A,它关于原点的对称点为B,双曲线的右焦点为F,满足,且,则双曲线的离心率e的值是A. B. C.2 D.7.在三棱锥中,平面平面ABC,平面PAB,,,则三棱锥的外接球的表面积为()A. B. C. D.8.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球 B.三棱锥 C.正方体 D.圆柱9.对于命题“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体()A.各正三角形内的点B.各正三角形的中心C.各正三角形某高线上的点D.各正三角形各边的中点10.为了弘扬我国优秀传统文化,某中学广播站在春节、元宵节、清明节、端午节、中秋节五个中国传统节日中,随机选取两个节日来讲解其文化内涵,那么春节和端午节恰有一个被选中的概率是()A. B. C. D.11.已知A,B是半径为的⊙O上的两个点,·=1,⊙O所在平面上有一点C满足|+|=1,则||的最大值为()A.+1 B.+1 C.2+1 D.+112.如图所示,在一个边长为2.的正方形AOBC内,曲和曲线围成一个叶形图阴影部分,向正方形AOBC内随机投一点该点落在正方形AOBC内任何一点是等可能的,则所投的点落在叶形图内部的概率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,且与共线,则的值为__.14.随机变量X服从于正态分布N(2,σ2)若P(X≤0)=a,则P(2<X<4)=_____15.一个酒杯的轴截面是抛物线的一部分,它的方程是x2=2y(0≤y≤20).在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r的范围为16.已知三棱锥的底面是等腰三角形,,底面,,则这个三棱锥内切球的半径为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某同学在解题中发现,以下三个式子的值都等于同一个常数.①②③(是虚数单位)(Ⅰ)从三个式子中选择一个,求出这个常数;(Ⅱ)根据三个式子的结构特征及(Ⅰ)的计算结果,将该同学的发现推广为一个复数恒等式,并证明你的结论.18.(12分)命题:方程有实数解,命题:方程表示焦点在轴上的椭圆.(1)若命题为真,求的取值范围;(2)若命题为真,求的取值范围.19.(12分)已知函数f(x)=x2(x-a),x∈R(Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)设f'(x)是f(x)的导函数,函数g(x)=f'(x),f(x)≥20.(12分)2016年10月16日,在印度果阿出席金砖国家领导人第八次会议时,发表了题为《坚定信心,共谋发展》的重要讲话,引起世界各国的关注,为了了解关注程度,某机构选取“70后”和“80后”两个年龄段作为调查对象,进行了问卷调查,共调查了120名“80后”,80名“70后”,其中调查的“80后”有40名不关注,其余的全部关注;调查的“70”后有10人不关注,其余的全部关注.(1)根据以上数据完成下列2×2列联表:关注不关注合计“80后”“70后”合计(2)根据2×2列联表,能否在犯错误的概率不超过0.001的前提下,认为“关注与年龄段有关”?请说明理由。参考公式:K2=(n=a+b+c+d)附表:P(K2≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.82821.(12分)如图,已知单位圆上有四点,,,,其中,分别设的面积为和.(1)用表示和;(2)求的最大值及取最大值时的值.22.(10分)2018年2月22日,在韩国平昌冬奥会短道速滑男子500米比赛中,中国选手武大靖以连续打破世界纪录的优异表现,为中国代表队夺得了本届冬奥会的首枚金牌,也创造中国男子冰上竞速项目在冬奥会金牌零的突破.某高校为调查该校学生在冬奥会期间累计观看冬奥会的时间情况,收集了200位男生、100位女生累计观看冬奥会时间的样本数据(单位:小时).又在100位女生中随机抽取20个人,已知这20位女生的数据茎叶图如图所示.(I)将这20位女生的时间数据分成8组,分组区间分别为,,…,,,完成频率分布直方图;(II)以(I)中的频率作为概率,求1名女生观看冬奥会时间不少于30小时的概率;(III)以(I)中的频率估计100位女生中累计观看时间小于20个小时的人数,已知200位男生中累计观看时间小于20小时的男生有50人.请完成下面的列联表,并判断是否有99%的把握认为“该校学生观看冬奥会累计时间与性别有关”.男生女生总计累计观看时间小于20小时累计观看时间小于20小时总计300附:().

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】由于,则由正态分布图形可知图形关于对称,故,则,故选C.2、D【解题分析】

利用三角恒等变换化简函数的解析式,再根据正弦函数的极值点,可得2kπ2ωπ4ωπ2kπ,或2kπ2ωπ4ωπ2kπ,k∈Z,由此求得ω的取值范围.【题目详解】∵函数=sin2ωx﹣2•1=sin2ωxcos2ωx+1=2sin(2ωx)+1在区间(π,2π)内没有极值点,∴2kπ2ωπ4ωπ2kπ,或2kπ2ωπ4ωπ2kπ,k∈Z.解得kω,或kω,令k=0,可得ω∈故选D.【题目点拨】本题主要考查三角恒等变换,正弦函数的极值点,属于中档题.3、A【解题分析】

利用条件概率公式,即可得出结论.【题目详解】由题意,,,所以,故选A项.【题目点拨】本题考查条件概率的计算,正态分布的简单应用,属于简单题.4、B【解题分析】

证明与平面所成角为,再利用边的关系得到正弦值.【题目详解】如图所示:连接与交于点,连接,过点作与平面所成角等于与平面所成角正方体平面平面与平面所成角为设正方体边长为1在中故答案选B【题目点拨】本题考查了线面夹角,判断与平面所成角为是解得的关键,意在考查学生的计算能力和空间想象能力.5、B【解题分析】

先对已知函数f(x)求导,由可得a的值,由此确定函数和其导函数的解析式,进而可得x=0处的切线方程。【题目详解】,,解得,即,,则,,曲线在点处的切线方程为,即.【题目点拨】本题考查求函数某点处的切线方程,解题关键是先由条件求出函数f(x)中的未知量a。6、B【解题分析】

设是双曲线的左焦点,由题可得是一个直角三角形,由,可用表示出,,利用双曲线定义列方程即可求解.【题目详解】依据题意作图,如下:其中是双曲线的左焦点,因为,所以,由双曲线的对称性可得:四边形是一个矩形,且,在中,,,,由双曲线定义得:,即:,整理得:,故选B【题目点拨】本题主要考查了双曲线的简单性质及双曲线定义,考查计算能力,属于基础题.7、B【解题分析】

如图,由题意知,,的中点是球心在平面内的射影,设点间距离为,球心在平面中的射影在线段的高上,则有,可得球的半径,即可求出三棱锥的外接球的表面积.【题目详解】由题意知,,的中点是球心在平面中的射影,设点间距离为,球心在平面中的射影在线段的高上,,,,又平面平面ABC,,则平面,,到平面的距离为3,,解得:,所以三棱锥的外接球的半径,故可得外接球的表面积为.故选:B【题目点拨】本题主要考查了棱锥的外接球的表面积的求解,考查了学生直观想象和运算求解能力,确定三棱锥的外接球的半径是关键.8、D【解题分析】

试题分析:球的三视图都是圆,如果是同一点出发的三条侧棱两两垂直,并且长度相等的三棱锥(一条侧棱与底面垂直时)的三视图是全等的等腰直角三角形,正方体的三视图可以都是正方形,但圆柱的三视图中有两个视图是矩形,有一个是圆,所以圆柱不满足条件,故选D.考点:三视图9、B【解题分析】四面体的面可以与三角形的边类比,因此三边的中点也就类比成各三角形的中心,故选择B.10、C【解题分析】分析:先根据组合数确定随机选取两个节日总事件数,再求春节和端午节恰有一个被选中的事件数,最后根据古典概型概率公式求结果.详解:因为五个中国传统节日中,随机选取两个节日共有种,春节和端午节恰有一个被选中的选法有,所以所求概率为选C.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.11、A【解题分析】

先由题意得到,根据向量的数量积求出,以O为原点建立平面直角坐标系,设A(,)得到点B坐标,再设C(x,y),根据点B的坐标,根据题中条件,即可求出结果.【题目详解】依题意,得:,因为,所以,=1,得:,以O为原点建立如下图所示的平面直角坐标系,设A(,),则B(,)或B(,)设C(x,y),当B(,)时,则=(+-x,+-y)由|+|=1,得:=1,即点C在1为半径的圆上,A(,)到圆心的距离为:=||的最大值为+1当B(,)时,结论一样.故选A【题目点拨】本题主要考查向量模的计算,熟记向量的几何意义,以及向量模的计算公式,即可求解,属于常考题型.12、C【解题分析】

欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解.【题目详解】联立得.由图可知基本事件空间所对应的几何度量,满足所投的点落在叶形图内部所对应的几何度量:(A).所以(A).故选:.【题目点拨】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】

先求得,然后根据两个向量共线列方程,解方程求得的值,进而求得的值.【题目详解】依题意,由于与共线,故,解得,故.【题目点拨】本小题主要考查平面向量减法的坐标运算,考查两个平面向量平行的坐标表示,属于基础题.14、【解题分析】

利用正态分布的对称性,求得的值.【题目详解】由条件知,故.【题目点拨】本小题主要考查正态分布在指定区间的概率,属于基础题.15、0<r≤1【解题分析】

设小球圆心(0,y0)抛物线上点(x,y)点到圆心距离平方r2=x2+(y﹣y0)2=2y+(y﹣y0)2=y2+2(1﹣y0)y+y02若r2最小值在(0,0)时取到,则小球触及杯底,此二次函数对称轴在纵轴左边,所以1﹣y0≥0所以0<y0≤1所以0<r≤1故答案为0<r≤1点评:本题主要考查了抛物线的应用.考查了学生利用抛物线的基本知识解决实际问题的能力.16、【解题分析】分析:利用等体积法,设内切球半径为r,则r(S△ABC+S△PAC+S△PAB+S△PCB)=×PA•S△ABC,解得求出r,再根据球的体积公式即可求出.详解:∵AB⊥AC,PA⊥底面ABC,PA=AB=1,∴∴S△ABC=×AC×BC=×1×1=,S△PAC=×AC×PA=S△PAB=×AB×PA=,S△PCB==,∴VP﹣ABC=×PA•S△ABC=,设内切球半径为r,则r(S△ABC+S△PAC+S△PAB+S△PCB)=×PA•S△ABC,解得r=.故答案为.点睛:(1)本题主要考查几何体的内切球问题,意在考查学生对这些知识的掌握水平和空间想象能力分析推理能力.(2)求几何体的内切球的半径一般是利用割补法和等体积法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I)(II)结论为(且不同时为零),证明见解析【解题分析】

(Ⅰ)将三个式子化简答案都为.(II)观察结构归纳结论为,再利用复数的计算证明结论.【题目详解】(I)(II)根据三个式子的结构特征及(I)的计算结果,可以得到:(且不同时为零)下面进行证明:要证明只需证只需证因为上式成立,所以成立.(或直接利用复数的乘除运算得出结果)【题目点拨】本题考查了复数的计算和证明,意在考查学生的归纳能力.18、(1).(2)【解题分析】

(1)原题转化为方程有实数解,;(2)为真,即每个命题都为真,根据第一问得到参数范围,进而得到结果.【题目详解】(1)∵有实数解,∴(2)∵椭椭圆焦点在轴上,所以,∴∵为真,,.【题目点拨】由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.假若p且q真,则p真,q也真;若p或q真,则p,q至少有一个真;若p且q假,则p,q至少有一个假.(2)可把“p或q”为真命题转化为并集的运算;把“p且q”为真命题转化为交集的运算.19、(Ⅰ)y=x-1(Ⅱ)g【解题分析】

(Ⅰ)求函数的导数,当a=1时,利用点斜式可求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)分别讨论a,利用数形结合法,求函数g(x)=f【题目详解】(Ⅰ)当a=1时,f(x)=x2(x-1),∴f'(1)=1,又∴曲线(1,f(1))在点(1,f(1))处的切线方程为:y=x-1.(Ⅱ)f(x)=x3-a由f(x)=fx1=a+3-a2-2a+9得当-2≤a≤2,x2a=0时,g(x)=x3,g(x)在-2,2单调递增,∴g②当-2≤a<0时,可得-2≤a<x1<∴g(x)在-2,x1单调递增,x1g(x)min③当0<a≤2时,可得0<a∵f(x)∴g(x)=f(x),x∈[-2,0]∴g(x)在-2,0单调递增,0,a3单调递减,a3,x∴g(x)综上,g(x)【题目点拨】本题考查了导数的综合应用问题,函数曲线的切线,函数的最值,属于难题.20、(1)见解析;(2)见解析【解题分析】试题分析:(1)根据题设中的数据,即可填写的列联

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论