




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省正安县第八中学2024届数学高二下期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设有两条直线,和两个平面、,则下列命题中错误的是A.若,且,则或B.若,且,,则C.若,且,,则D.若,且,则2.正数满足,则()A. B. C. D.3.如图阴影部分为曲边梯形,其曲线对应函数为,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是()A. B. C. D.4.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是()A. B. C. D.5.若双曲线的一条渐近线被圆所截得的弦长为2,则双曲线的离心率为()A. B.2 C. D.6.“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.“搜索指数”越大,表示网民对该关键词的搜索次数越多,对该关键词相关的信息关注度也越高.如图是2018年9月到2019年2月这半年中,某个关键词的搜索指数变化的走势图.根据该走势图,下列结论正确的是()A.这半年中,网民对该关键词相关的信息关注度呈周期性变化B.这半年中,网民对该关键词相关的信息关注度不断减弱C.从网民对该关键词的搜索指数来看,去年10月份的方差小于11月份的方差D.从网民对该关键词的搜索指数来看,去年12月份的平均值大于今年1月份的平均值7.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有()A.210种 B.420种 C.630种 D.840种9.小张从家出发去看望生病的同学,他需要先去水果店买水果,然后去花店买花,最后到达医院.相关的地点都标在如图所示的网格纸上,网格线是道路,则小张所走路程最短的走法的种数为()A.72 B.56 C.48 D.4010.若展开式的常数项为60,则值为()A. B. C. D.11.水以恒速(即单位时间内注入水的体积相同)注入下面的容器中,则此容器里水的高度与时间的函数关系图象是()A. B. C. D.12.已知随机变量服从的分布列为123…nP…则的值为()A.1 B.2 C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.北纬圈上有A,B两点,该纬度圈上劣弧长为(R为地球半径),则A,B两点的球面距离为________.14.在极坐标系中,点到直线的距离为_____.15.已知函数的对称轴方程为__________.16.某微信群中甲、乙、丙、丁、戊五名成员先后抢4个不相同的红包,每人最多抢一个红包,且红包全被抢光,则甲乙两人都抢到红包的情况有________种三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设正整数,集合,是集合P的3个非空子集,记为所有满足:的有序集合对(A,B,C)的个数.(1)求;(2)求.18.(12分)不等式的解集是,关于x的不等式的解集是。(1)若,求;(2)若,求实数的取值范围。19.(12分)已知数列的前项和(1)求的通项公式;(2)若数列满足:,求的前项和(结果需化简)20.(12分)已知函数,求:(1)函数的图象在点处的切线方程;(2)的单调递减区间.21.(12分)已知椭圆的右顶点为,定点,直线与椭圆交于另一点.(Ⅰ)求椭圆的标准方程;(Ⅱ)试问是否存在过点的直线与椭圆交于两点,使得成立?若存在,请求出直线的方程;若不存在,请说明理由.22.(10分)随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到下表(单位:人):经常使用偶尔或不用合计30岁及以下703010030岁以上6040100合计13070200(Ⅰ)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?(Ⅱ)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.(1)分别求这5人中经常使用、偶尔或不用共享单车的人数;(2)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.参考公式:,其中.参考数据:P(K2≥k0)0.150.100.050.0250.010k02.0722.7063.8415.0246.635
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
对A,直接进行直观想象可得命题正确;对,由线面垂直的性质可判断;对,由线面垂直的性质定理可判断;对D,也有可能.【题目详解】对A,若,且,则或,可借助长方体直接进行观察命题成立,故A正确;对B,若,且,可得,又,则由线面垂直的性质可知,故B正确;对C,若,且,可得,又,由线面垂直的性质定理可知,故C正确;对D,若,且,则也有可能,故D错误.故选:D.【题目点拨】本题考查空间中直线与直线、直线与平面、平面与平面之间的位置关系,熟练掌握空间线面之间关系的判定方法及性质定理是解答此类问题的关键.2、C【解题分析】给定特殊值,不妨设,则:.本题选择C选项.3、D【解题分析】
通过定积分可求出空白部分面积,于是利用几何概型公式可得答案.【题目详解】由题可知长方形面积为3,而长方形空白部分面积为:,故所求概率为,故选D.【题目点拨】本题主要考查定积分求几何面积,几何概型的运算,难度中等.4、B【解题分析】
由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为,故第1行的从右往左第一个数为:,第2行的从右往左第一个数为:,第3行的从右往左第一个数为:,…第行的从右往左第一个数为:,表中最后一行仅有一个数,则这个数是.5、B【解题分析】
写出双曲线的渐近线方程,由圆的方程得到圆心坐标与半径,结合点到直线的距离公式与垂径定理列式求解.【题目详解】解:双曲线的渐近线方程为,由对称性,不妨取,即.圆的圆心坐标为,半径为,则圆心到渐近线的距离,,解得.故选:B.【题目点拨】本题考查双曲线的简单性质,考查直线与圆位置关系的应用,属于中档题.6、D【解题分析】
选项A错,并无周期变化,选项B错,并不是不断减弱,中间有增强.C选项错,10月的波动大小11月分,所以方差要大.D选项对,由图可知,12月起到1月份有下降的趋势,所以去年12月份的平均值大于今年1月份的平均值.选D.7、D【解题分析】取,则,但,故;取,则,但是,故,故“”是“”的既不充分也不必要条件,选D.8、B【解题分析】依题意可得,3位实习教师中可能是一男两女或两男一女.若是一男两女,则有种选派方案,若是两男一女,则有种选派方案.所以总共有种不同选派方案,故选B9、A【解题分析】
分别找出从家到水果店,水果店到花店,花店到医院的最短路线,分步完成用累乘即可.【题目详解】由题意可得从家到水果店有6种走法,水果店到花店有3种走法,花店到医院有4种走法,因此一共有(种)【题目点拨】本题考查了排列组合中的乘法原理.属于基础题.10、D【解题分析】
由二项式展开式的通项公式写出第项,求出常数项的系数,列方程即可求解.【题目详解】因为展开式的通项为,令,则,所以常数项为,即,所以.故选D【题目点拨】本题主要考查二项式定理的应用,熟记二项展开式的通项即可求解,属于基础题型.11、C【解题分析】分析:根据容器的特征,结合几何体的结构和题意知,容器的底面积越大水的高度变化慢、反之变化的快,再由图象越平缓就是变化越慢、图象陡就是变化快来判断.结合函数图像分析判别可得结论.详解:A、B选项中:函数图象是单调递增的,与与题干不符,故排除;C、当注水开始时,函数图象往下凸,可得出下方圆台容器下粗上细,符合题意.;D、当注水时间从0到t时,函数图象往上凸,可得出下方圆台容器下细上粗,与题干不符,故排除.故选C.点睛:本题考查了数形结合思想,对于此题没有必要求容器中水面的高度h和时间t之间的函数解析式,因此可结合几何体和图象作定性分析,即充分利用数形结合思想.12、A【解题分析】
由概率之和为1,列出等式,即可求得k值.【题目详解】由概率和等于1可得:,即.故选A.【题目点拨】本题考查分布列中概率和为1,由知识点列式即可得出结论.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先求出北纬圈所在圆的半径,是、两地在北纬圈上对应的圆心角,得到线段的长,设地球的中心为,解三角形求出的大小,利用弧长公式求、这两地的球面距离.【题目详解】解:北纬圈所在圆的半径为,它们在纬度圈上所对应的劣弧长等于为地球半径),是、两地在北纬圈上对应的圆心角),故,线段,,、这两地的球面距离是,故答案为:.【题目点拨】本题考查球的有关经纬度知识,球面距离,弧长公式,考查空间想象能力,逻辑思维能力,属于基础题.14、【解题分析】
把点的极坐标化为直角坐标,把直线的极坐标方程化为直角坐标方程,利用点到直线的距离公式求出A到直线的距离.【题目详解】解:点A(2,)的直角坐标为(0,2),直线ρ(cosθ+sinθ)=6的直角坐标方程为x+y﹣6=0,利用点到直线的距离公式可得,点A(2,)到直线ρ(cosθ+sinθ)=6的距离为,故答案为.【题目点拨】本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,属于基础题.15、【解题分析】分析:令,解出即可.详解:函数,对称轴方程为,故答案为:.点睛:考查了余弦函数的图像的性质》16、72【解题分析】第一步甲乙抢到红包,有种,第二步其余三人抢剩下的两个红包,有种,所以甲乙两人都抢到红包的情况有种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解题分析】
(1)通过分析,,分别讨论可得到;(2)通过分析A共有种不同情形,集合B共有种不同情形,集合C随集合B确定而唯一确定,于是可得通项公式.【题目详解】当时,集合,因为是集合P的3个非空子集,根据题意,所以当时,或;当时,或;当时,或.所以.(2)当A中的元素个数为时,集合A共有种不同情形,集合B共有种不同情形,集合C随集合B确定而唯一确定,所以.【题目点拨】本题主要考查数列,集合,排列组合的综合运用,意在考查学生的划归能力,分析能力,逻辑推理能力,难度较大.18、(1)(2)【解题分析】
(1)解集合A,当解得集合B,从而可得;(2)由可得,对m进行讨论得出集合B的范围即可得出m范围.【题目详解】(1),解得即,由得,所以,所以;(2)即(i),所以且,得;(ii),所以且,得;综上,.【题目点拨】本题考查了分式不等式和二次不等式的解法,集合交集的运算,集合补集运算的转化,属于中档题.19、(1);(2);【解题分析】
(1)运用数列的递推式得时,,时,,化简计算可得所求通项公式;(2)求得,运用数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.【题目详解】(1)可得时,则(2)数列满足,可得,即,前项和两式相减可得化简可得【题目点拨】本题考查数列的递推式的运用,考查数列的错位相减法求和,以及等比数列的求和公式,考查运算能力,属于中档题.20、(1);(2)【解题分析】
试题分析:第(1)问,先求导,再求出切线的斜率和切点坐标,最后写出直线的点斜式方程;第(2)问,直接利用导数求函数的单调递减区间.试题解析:,,,所以切点为(0,-2),∴切线方程为,一般方程为;(2),令,解得或,∴的单调递减区间为和.21、(Ⅰ);(Ⅱ)存在,或【解题分析】
(1)由已知可得,再将点代入椭圆方程,求出即可;(2)设,由已知可得,结合,可得,从而有,验证斜率不存在时是否满足条件,当斜率存在时,设其方程为,与椭圆方程联立,根据根与系数关系,得出关系式,结合,即可求解.【题目详解】(Ⅰ)由椭圆的右顶点为知,.把点坐标代入椭圆方程,得.解得.所以椭圆的标准方程为.(Ⅱ),所以.由,得,即,所以.设,,则,,所以.①当直线的斜率不存在时,直线的方程为,,这与矛盾.②当直线的斜率存在时,设直线的方程为.联立方程得.,.由可得,,即.整理得.解得.综上所述,存在满足条件的直线,其方程为或.【题目点拨】本题考查椭圆的标准方程、直线与椭圆的位置关系,要熟练应用根与系数关系设而不求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股东协议终止后公司注销代理协议
- 餐饮店员工培训与薪酬体系协议
- 物业联合服务协议书范本
- 婚前财物退还协议书范本
- 智慧城市核心区厂房转租及智能化改造合同
- 烧烤美食城整体租赁及经营管理协议
- 【课件】密度的应用.-2024-2025学年八年级物理人教版(2024)上册
- 茶饮制作培训
- 2024年高尔夫项目建议书
- 机加工工件全流程管理
- 企业国际化人才绩效考核体系优化研究
- 第14课 古代丝路与工艺美术交流 课件-2024-2025学年高中美术鲁美版美术鉴赏
- 中医护理技术-平衡火罐
- 上海宝山区公开招聘社区工作者考试高频题库带答案2025年
- 体育经纪人资格考试复习资料
- 2025年英语四级考试试卷及答案
- 中国丝绸文化课件
- 学科融合在初中音乐教学中的实践研究
- 《分子间作用力理论》课件
- 2025春季学期国开电大本科《管理英语3》一平台在线形考综合测试形考任务试题及答案
- 购房违约免责协议书
评论
0/150
提交评论