生态学05生态系统_第1页
生态学05生态系统_第2页
生态学05生态系统_第3页
生态学05生态系统_第4页
生态学05生态系统_第5页
已阅读5页,还剩62页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四篇生态系统生态学第一节生态系统的一般特征第二节生态系统的能量流动第三节生态系统的物质循环第四节自然生态系统第一节生态系统的一般特征§1生态系统的概念§2生态系统的组成成分§3生态系统的结构§4生态系统的功能§5生态系统的稳定性§6生态系统的服务功能§1生态系统的基本概念生态系统(ecosystem)的定义:由英国植物生态学家A.G.Tansley(1935)提出指在一定的空间内,生物成分和非生物成分通过物质循环和能量流动互相作用、互相依存而构成的一个生态学功能单位,这个生态学功能单位称生态系统。生态系统的特点:生态系统是生态学的一个主要结构和功能单位,属于经典生态学研究的最高层次;生态系统具有自我调节能力;能量流动、物质循环和信息传递是生态系统的三大功能;生态系统中营养级的数目受限于生产者所固定的最大能量和这些能量在流动过程中的巨大损失,因此,营养级的数目通常不超过5-6个;生态系统是一个动态系统,要经历一系列发育阶段。§2生态系统的组成成分无机物有机化合物气候因素②生产者

(producer)③消费者

(consumer)④分解者

(还原者)(decomposer)六大组成成分(四大基本成分)①生产者:自养生物,主要是各种绿色植物,也包括蓝绿藻和一些能进行光合作用的细菌。②消费者:异养生物,主要指以其他生物为食的各种动物,包括植食动物(一级)、肉食动物(二~四级)、杂食动物和寄生动物等。③分解者:异养生物,把复杂的有机物分解成简单无机物,包括细菌、真菌、放线菌和动物等。①非生物成分生物成分(生物群落)三大功能群§3生态系统的结构空间结构时间结构营养结构食物链(C.Elton,1927)食物网食物链和食物网概念的意义生态系统的营养结构及能流和物流间的关系一个食物链的例子“螳螂捕蝉,黄雀在后”螳螂捕蝉,黄雀在后!哈!哈!植物汁液蝉(初级消费者)螳螂(二级消费者)黄雀(三级消费者)鹰(四级消费者)(顶极食肉动物)食物链食物链(foodchain)和营养级(trophiclevel):食物链指生态系统中不同生物之间在营养关系中形成的一环套一环似链条式的关系,即物质和能量从植物开始,然后一级一级地转移到大型食肉动物。食物链上的每一个环节称为营养阶层或营养级,指处于食物链某一环节上的所有生物种的总和。食物链的类型:根据食物链的起点不同,可将其分成两大类:牧食食物链(grazingfoodchain):又称捕食食物链,以活的动植物为起点的食物链,如绿色植物,草食动物、各级食肉动物。寄生食物链可以看作捕食食物链的一种特殊类型。腐食食物链(detritalfoodchain):又称碎屑食物链,从死亡的有机体或腐屑开始。食物网食物网

(foodweb):生态系统中的食物链很少是单条、孤立出现的,它往往是交叉链索,形成复杂的网络结构,此即食物网。食物链和食物网概念的意义食物链是生态系统营养结构的形象体现。通过食物链和食物网把生物与非生物、生产者与消费者、消费者与消费者连成一个整体,反映了生态系统中各生物有机体之间的营养位置和相互关系;各生物成分间通过食物网发生直接和间接的联系,保持着生态系统结构和功能的稳定性。生态系统中能量流动物和物质循环正是沿着食物链和食物网进行的。食物链和食物网还揭示了环境中有毒污染物转移、积累的原理和规律。生态系统的营养结构及能流和物流间的关系生产者(绿色植物)消费者(动物)还原者(细菌、真菌)放牧系统净初级生产分解系统死有机物太阳辐射能呼吸散失呼吸散失生态系统的营养结构(能量流动)能流物流环境(土壤、空气、水)生态系统的营养结构(物质循环)§4生态系统的功能能量流动:生产者→消费者→分解者,单向(在第十章详述)物质循环:生物←→环境,双向(在第十一章详述)信息传递:包括营养信息、化学信息、物理信息和行为信息等,构成信息网。生态系统的信息传递生态系统的信息特征生态系统信息流动的过程和环节信息化的生态系统生态系统的信息处理系统§5生态系统的稳定性生态系统的稳定性(stability)(生态平衡):生态系统通过发育和调节达到一种稳定的状态,表现为结构上、功能上、能量输入和输出上的稳定,当受到外来干扰时,平衡将受到破坏,但只要这种干扰没有超过一定限度,生态系统仍能通过自我调节恢复原来状态。 生态系统稳定性包括了两个方面的含义:一方面是系统保持现行状态的能力,即抗干扰的能力(抵抗力resistance);另一方面是系统受扰动后回归该状态的倾向,即受扰后的恢复能力(恢复力resilience)。生态系统稳定性机制:生态系统具有自我调节的能力,维持自身的稳定性,自然生态系统可以看成是一个控制论系统,因此,负反馈(negativefeedback)调节在维持生态系统的稳定性方面具有重要的作用。生态系统中的反馈(正反馈(左)和负反馈(右))狼↑狼↓兔↓兔↑植物↓植物↑狼饿死狼吃饱吃了较多兔子吃了较少兔子兔吃饱兔饿死吃了较少的草吃了大量的草污染↑

鱼死亡↑污染↑

鱼死亡↑

↑↑鱼死亡↑↑污染↑

第二节生态系统的能量流动§1生态系统的生物生产§2生态系统中的分解§3生态系统的能流过程§4生态系统能流分析§1生态系统的生物生产生物生产的基本概念生物生产生物量与生产量初级生产总初级生产与净初级生产影响初级生产的因素初级生产量的测定方法次级生产次级生产的基本特点次级生产量的测定方法生物生产生物生产:是生态系统重要功能之一。生态系统不断运转,生物有机体在能量代谢过程中,将能量、物质重新组合,形成新的产品的过程,称生态系统的生物生产。生物生产常分为个体、种群和群落等不同层次。生态系统中绿色植物通过光合作用,吸收和固定太阳能,从无机物合成、转化成复杂的有机物。由于这种生产过程是生态系统能量贮存的基础阶段,因此,绿色植物的这种生产过程称为初级生产(primaryproduction),或第一性生产。初级生产以外的生态系统生产,即消费者利用初级生产的产品进行新陈代谢,经过同化作用形成异养生物自身的物质,称为次级生产(secondaryproduction),或第二性生产。生物量和生产量生物量(biomass):某一特定观察时刻,某一空间范围内,现有有机体的量,它可以用单位面积或体积的个体数量、重量(狭义的生物量)或含能量来表示,因此它是一种现存量(standingcrop)。现存的数量以N表示,现在的生物量以B表示。现存生物量通常用平均每平方米生物体的干重(g·m-2)或平均每平方米生物体的热值来表示(J·m-2)。生产量(production):是在一定时间阶段中,某个种群或生态系统所新生产出的有机体的数量、重量或能量。它是时间上积累的概念,即含有速率的概念。有的文献资料中,生产量、生产力(productionrate)和生产率(productivity)视为同义语,有的则分别给予明确的定义。生物量和生产量是不同的概念,前者到某一特定时刻为止,生态系统所积累下来的生产量,而后者是某一段时间内生态系统中积存的生物量。生产量和现存量关系示意图现存量现存量P=△B+EB生产量PA减少量E生产量P减少量E总初级生产与净初级生产初级生产过程可用下列方程式概述:光能

6CO2+6H2OC6H12O6+

6O2

叶绿素总初级生产(grossprimaryproduction,GP)与净初级生产(netprimaryproduction,NP):植物在单位面积、单位时间内,通过光合作用固定太阳能的量称为总初级生产(量),常用的单位:J·m-2·a-1或gDW

·m-2·a-1;植物总初级生产(量)减去呼吸作用消耗掉的(R),余下的有机物质即为净初级生产(量)。二者之间的关系可表示如下:

GP=NP+R;NP=GP-R影响初级生产的因素NPRCO2光H2O营养取食O2+温度陆地生态系统中,初级生产量是由光、二氧化碳、水、营养物质(物质因素)、氧和温度(环境调节因素)六个因素决定的。污染物⑥①②③④⑤光合作用生物量GP初级生产量的测定方法产量收割法:收获植物地上部分烘干至恒重,获得单位时间内的净初级生产量。氧气测定法:总光合量=净光合量+呼吸量二氧化碳测定法:用特定空间内的二氧化碳含量的变化,作为进入植物体有机质中的量,进而估算有机质的量。pH测定法:水体中的pH值随着光合作用中吸收二氧化碳和呼吸过程中释放二氧化碳而发生变化,根据pH值变化估算初级生产量。叶绿素测定法:叶绿素与光合作用强度有密切的定量关系,通过测定体中的叶绿素可以估计初级生产力。放射性标记测定法:把具有14C的碳酸盐(14CO32-)放入含有天然水体浮游植物的样瓶中,沉入水中,经过一定时间的培养,滤出浮游植物,干燥后,测定放射性活性,确定光合作用固定的碳量。由于浮游植物在黑暗中也能吸收14C,因此,还要用“暗吸收”加以校正。黑白瓶法黑瓶(呼吸作用)白瓶(净光合作用)

对照瓶(消除误差)放置于水样深度处一定时间后,测各瓶的含氧量变化,求初级生产量次级生产的基本特点次级生产过程模型食物资源未采食拒食未食粪便(Fu)呼吸(R)分解被采食可利用食用(C)同化(A)动物产品产生能量(P)潜在能量保持能量损失能量ⅠⅡⅢⅣⅤⅥC=A+FuA=P+RC=P+Fu+RP=C-Fu-R次级生产量的测定方法按已知同化量A和呼吸量R,估计生产量PP=C-Fu-R,Fu-尿粪量根据个体生长或增重的部分Pg和新生个体重Pr,估计PP=Pg+Pr根据生物量净变化△B和死亡损失E,估计PP=△B+E

§2生态系统中的分解资源分解的过程:分碎裂过程、异化过程和淋溶过程等三个过程。资源分解的意义:理论意义:通过死亡物质的分解,使营养物质再循环,给生产者提供营养物质;维持大气中二氧化碳的浓度;稳定和提高土壤有机质含量,为碎屑食物链以后各级生物生产食物;改善土壤物理性状,改造地球表面惰性物质;实践意义:粪便处理污水处理澳大利亚引进异地金龟处理牛粪澳洲大陆距今14000万(1.4亿)年前就与其他陆地隔离,生物区系独特,当地繁殖的最大兽类是有袋类的大袋鼠。移民于1788年运去了第一批5头奶牛和2头公牛,到19世纪未牛的头超过4500万头。如以每头牛一昼夜排便10次计算,每天就有4.5亿堆又大又湿的牛粪。而当地的金龟子主要取食干硬的袋鼠粪,而对软而湿的牛粪不感兴趣。由于当地缺乏分解牛粪的生物,牛粪在草原上风干硬化,几年内都难以分解,日积月积,牛粪数量惊人。牛粪覆盖并破坏大面积草原,形成草原上的一块块秃斑。每年被毁的牧场竟达3600万亩。澳大利亚学者M.H.Wallace(1978)指出“澳大利亚的牛多,牛粪更多,牛屎多到铺天盖地,如果不到世界各地引种食粪金龟子处理,澳大利亚就将淹没在牛屎堆里。”据实验两头金龟子一前一后,能将100克牛粪在30-40小时内,滚成球,埋入土层里,以备子代食用。由于牛粪中的蝇卵需96小时后才能孵化为幼虫,牛粪埋入地下,蝇类无法孵化。因此,金龟子消除了牛粪,又破坏了蝇类滋生的条件。为此,60年代,澳大利亚引入了羚羊粪蜣(Onthophagus

gazella)和神农蜣螂(Catharsius

molossus)等异地金龟,对分解牛粪发挥了明显的作用。§3生态系统的能流过程生态系统能量流动规律生态系统中能流途径能量流动的生态效率生态系统能量流动规律生态系统是一个热力学系统,生态系统中能量的传递、转换遵循热力学的两条定律:第一定律:能量守恒定律,能量可由一种形式转化为其他形式的能量,能量既不能消灭,又不能凭空创造。第二定律:熵律,任何形式的能(除了热)转化到另一种形式能的自发转换中,不可能100%被利用,总有一些能量作为热的形式被耗散出去,熵就增加了。生态系统中能流特点(规律):能流在生态系统中是变化着的;能流是单向流;能量在生态系统内流动的过程,就是能量不断递减的过程;能量在流动过程中,质量逐渐提高。生态系统中能量流动的途径牧食食物链和腐食食物链是生态系统能流的主要渠道。能量流动以食物链作为主线,将绿色植物与消费者之间进行能量代谢的过程有机地联系起来。牧食食物链的每一个环节上都有一定的新陈代谢产物进入到腐屑食物链中,从而把两类主要的食物链联系起来。能量在各营养级之间的数量关系可用生态金字塔表示。生态锥体(CharlesElton,1927)生态锥体(ecologicalpyramid):能量通过营养级逐级减少,如果把通过各营养级的能流量由低到高用图型表示,就成为一个金字塔形,称能量锥体或能量金字塔。同样如果以生物量或个体数目来表示,可能得到生物量锥体(pyramidofenergy)和数量锥体(pyramidofnumber)。三类锥体合称为生态锥体。a生物量锥体(gDW·m-2)b能量锥体(kcal·m-2·a-1)c数量锥体(个体·ha-1)1212生态锥体数量锥体以各个营养级的生物个体数量进行比较,忽视了生物量因素,一些生物的数量可能很多,但生物量却不一定大,在同一营养级上不同物种的个体大小也是不一样的。生物量锥体以各营养级的生物量进行比较,过高强调了大型生物的作用。能量锥体表示各营养级能量传递、转化的有效程度,不仅表明能量流经每一层次的总量,同时,表明了各种生物在能流中的实际作用和地位,可用来评价各个生物种群在生态系统中的相对重要性。能量锥体排除了个体大小和代谢速率的影响,以热力学定律为基础,较好地反映了生态系统内能量流动的本质关系。能量流动的生态效率生态效率(ecologicalefficiencies):是指各种能流参数中的任何一个参数在营养级之间或营养级内部的比值关系。最重要的生态效率(Kozlovsky,1969)有同化效率、生长效率、消费或利用效率、林德曼效率。同化效率(assimilationefficiency,AE):衡量生态系统中有机体或营养级利用能量和食物的效率。AE=An/In,An为植物固定的能量或动物吸收同化的食物,In为植物吸收的能或动物摄取的食物。生长效率(growthefficiency,GE):同一个营养级的净生产量(Pn)与同化量(An)的比值。GE=Pn/An。消费或利用效率(comsumptionefficiency,CE):一个营养级对前一个营养级的相对摄取量。CE=In+1/Pn,In+1为n+1营养级的摄取量,Pn为n营养级的净生产量。林德曼效率(Lindemanefficiency):指n与n+1营养级摄取的食物量能量之比。它相当于同化效率、生长效率和利用效率的乘积,即:In+1/In=An/In·

Pn/An·

In+1/Pn

美国明尼达州塞达波格湖的能流分析

--波格湖生态系统营养动态简图

λn

为从Λn-1到Λn的能量贡献速率,λn'为从Λn到Λn-1的能量损耗率

未利用的能量有机体利用的部分

太阳辐射能λ0●●●●Λ2Λ3Λ4非呼吸耗散的能呼吸耗散的能λ1λ2λ3λ4(λ3'=λ4+R3)R4(λ2'=λ3+R2)(λ1'=λ2+R1)R2R1Λn为营养级的能量含量Λ1美国明尼达州塞达波格湖的能流分析

--波格湖生态系统营养动态简图能量单位:cal·cm-2·

a–1

。呼吸29.3+未利用78.2+分解3.5=总初级生产量111.0,能量守恒总初级生产量111.0植食动物15.0肉食动物3.0分解3.0分解0.5分解微量呼吸23.0呼吸4.5呼吸1.8未利用70.0太阳能118872未利用7.0未利用1.2未吸收的能118761美国明尼达州塞达波格湖的能流分析

--波格湖生态系统能量金字塔3.0

cal·cm-2·

a–1

111.0

cal·cm-2·

a–1

15.0

cal·cm-2·

a–1

生物地化循环(biogeochemicalcycle)矿物元素在生态系统之间的输入和输出,它们在大气圈、水圈、岩圈之间以及生物间的流动和交换称生物地(球)化(学)循环,即物质循环(cyclingofmaterial)。第三节生态系统的物质循环生物地化循环的特点①物质循环不同于能量流动,后者在生态系统中的运动是循环的;②生物地化循环可以用库和流通率两个概念来描述。库是由存在于生态系统某些生物或非生物成分中一定数量的某种化学物质所构成的,可分为贮存库和交换库。前者的特点是库容量大,元素在库中滞留的时间长,流动速率小,多属于非生物成分;交换库则容量较小,元素滞留的时间短,流速较大。物质在生态系统单位面积(或单位体积)和单位时间的移动量称流通率。③生物地化循环在受人类干扰以前一般是处于一种稳定的平衡状态。④元素和难分解的化合物常发生生物积累、生物浓缩和生物放大现象。生物积累、生物浓缩和生物放大生物积累(bioaccumlation):指生态系统中生物不断进行新陈代谢的过程中,体内来自环境的元素或难分解的化合物的浓缩系数不断增加的现象。生物浓缩(bioconcentration):指生态系统中同一营养级上许多生物种群或者生物个体,从周围环境中蓄积某种元素或难分解的化合物,使生物体内该物质的浓度超过环境中的浓度的现象,又称生物富集。生物放大(biomagnification):指生态系统的食物链上,高营养级生物以低营养级生物为食,某种元素或难分解化合物在生物机体中浓度随营养级的提高而逐步增大的现象。生物放大的结果使食物链上高营养级生物体中该类物质的浓度显著超过环境中的浓度。碳循环(carboncycle)化泥碳煤大气中CO2CO2碳化作用石油水生植物光合作用腐烂燃料呼吸作用光合作用腐烂扩散氮循环(nitrogencycle)陆地陆地其它动植物蓝藻浅层死有机物溶解死有机物土壤中无机氮库丢失于深层沉积中动植物活体共生或自由生活的固氮微生物死有机体陆地河流带走生物固氮大气库N2大气库HN3,NO,NO2,N2O

,工业固氮(汽车,化肥,电厂)脱氮闪电化学反应海洋火山作用降水大气硫循环(sulfurcycle)陆地海洋沉积物(CaSO4,FeS2)溶解的SO42-SO2H2SSCaSO4FeS2死有机物活有机物SO42-降水SO2,SO42-扩散海浪SO42-大气上升,分化SO2FeS2死有机物活有机物SO42-H2SS分解化肥工业SO42-摄取扩散火山活动H2S,SO2,SO42-植物摄取SO2,SO42-降水SO2,SO42-化石燃烧

SO2H2S,SO2,SO42-第四节自然生态系统§1生态系统格局§2森林生态系统§3草原生态系统§4荒漠和苔原生态系统§5湿地生态系统§6水域生态系统§1

自然生态系统格局生态系统的类型及分布陆地生态系统的分布规律生态系统类型及分布陆地生态系统湿地生态系统:水域生态系统森林生态系统草地生态系统荒漠生态系统苔原生态系统海洋生态系统淡水生态系统陆地和水域的过渡类型热带雨林生态系统常绿阔叶林生态系统落叶阔叶林生态系统常绿落叶阔叶混交林生态系统针叶林生态系统草甸草原生态系统典型草原生态系统荒漠草原生态系统陆地生态系统的分布规律纬度地带性经度地带性垂直地带性纬度地带性由于太阳高度角及其季节变化因纬度而不同,太阳辐射量及与其相关的热量也因纬度而异,从赤道向两极温度递减。由于热量沿纬度变化,出现群落和生态系统类型的有规律更替,如从赤道向北极依次出现热带雨林、常绿阔叶林、落叶阔叶林、北方针叶林与苔原。经度地带性在北美和欧亚大陆,由于海陆分布格局与大气环流特点,水分梯度常沿经向变化,因而导致群落和生态系统经向分异,即由沿海湿润区的森林,经半干旱的草原至干旱的荒漠。与纬度地带性表现的自然规律不同,经度地带性是局部大陆的自然地理现象。

垂直高度地带性海拔高度每升高100米,气温下降0.4-0.6℃,降水最初随高度增加而增加,超过一定高度增加而降低。由于海拔高度的变化,常引起群落和生态系统有规律的更替。表现垂直带谱:山地季雨林、山地常绿阔叶林、落叶阔叶林、针阔混交林、针叶林、高山矮曲林、高山草原与高山草甸、高山永久冻土带。§2森林生态系统森林生态系统的分布规律森林生态系统的主要特征森林生态系统的功能我国的森林资源现状森林生态系统分布规律森林生态系统的主要特征生物种类多、结构复杂;系统稳定性高;物质循环的封闭程度高;生产效力高。森林生态系统的功能具有综合的环境效益;调节气候;涵养水源,保持水土;作为生物遗传资源库。我国的森林资源现状我国森林生态系统的主要问题森林生态系统比例小,地理分布不均匀;森林生态系统生物群落结构发生变化,系统自身调节能力下降;恢复和重建速度慢。森林生态系统破坏的生态危害:促进沙漠化的过程;对大气化学产生影响;引起气候变化、增加自然灾害发生的频率。我国森林生态系统恢复和重建对策:加快森林生态战略工程的建设,增大比例、改变格局;积极推广农林复合生态系统的建设;尽快建立南方用材林基地;加强科学管理,发挥现有森林综合效益潜力。中国生态区划分森林生态系统草原生态系统荒漠和苔原生态系统水域生态系统湿地生态系统§3草原生态系统草原生态系统的类型和特点草原生态环境现状草原生态环境恶化的原因恢复和保护对策草原生态系统的类型和特点草原生态系统的类型降水减少降水增加荒漠草原典型草原原草甸草原辐射量增加辐射量减少草原生态系统的特点草原生态系统中生产者的主体是禾本科、豆科和菊科等草本植物,优势植物以丛生禾本科为主。垂直结构通常分为三层:草本层、地面层和根层。气候(温度)对草原植物有明显的影响。草原生态系统中的初能消费者有适于奔跑的大型草食动物、穴居的啮齿动物以及小型的昆虫等;食肉动物有狼、狐、鼬、猛禽等。初级生产量在所有的陆地生态系统中居中等或中等偏下水平。草原生态环境现状20世纪60年代以来,草原生态系统普遍出现草原退化现象。20世纪70年代中期,全国退化草原面积占草原总面积的15%,20世纪70年代中期,增加到30%以上。全国草原退化面积以1000-2000万亩的速度扩展。草原退化的主要特征:群落优势种和结构发生改变;生产力低下,产草量下降;草原土壤生态条件发生巨变,出现沙化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论