甘肃省酒泉市瓜州县2023年九年级数学第一学期期末联考模拟试题含解析_第1页
甘肃省酒泉市瓜州县2023年九年级数学第一学期期末联考模拟试题含解析_第2页
甘肃省酒泉市瓜州县2023年九年级数学第一学期期末联考模拟试题含解析_第3页
甘肃省酒泉市瓜州县2023年九年级数学第一学期期末联考模拟试题含解析_第4页
甘肃省酒泉市瓜州县2023年九年级数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省酒泉市瓜州县2023年九年级数学第一学期期末联考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.小明同学对数据26,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则分析结果与被涂污数字无关的是()A.平均数 B.方差 C.中位数 D.众数2.如图,抛物线的对称轴为直线,则下列结论中,错误的是()A. B. C. D.3.如图所示的两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是()A.点C B.点DC.线段BC的中点 D.线段FC的中点4.抛物线y=(x+2)2-3的对称轴是(

)A.直线x=2 B.直线x=-2 C.直线x=-3 D.直线x=35.如图,在正方形ABCD中,AB=2,P为对角线AC上的动点,PQ⊥AC交折线于点Q,设AP=x,△APQ的面积为y,则y与x的函数图象正确的是()A. B.C. D.6.在平面直角坐标系中,点P(﹣2,7)关于原点的对称点P'在()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图,在正方形ABCD中,H是对角线BD的中点,延长DC至E,使得DE=DB,连接BE,作DF⊥BE交BC于点G,交BE于点F,连接CH、FH,下列结论:(1)HC=HF;(2)DG=2EF;(3)BE·DF=2CD2;(4)S△BDE=4S△DFH;(5)HF∥DE,正确的个数是()A.5 B.4 C.3 D.28.已知一个矩形的面积为24cm2,其长为ycm,宽为xcm,则y与x之间的函数关系的图象大致是A. B. C. D.9.下列关于x的方程是一元二次方程的有()①ax2+bx+c=0②x2=0③④A.②和③ B.①和② C.③和④ D.①和④10.如图,平行四边形的四个顶点分别在正方形的四条边上.,分别交,,于点,,,且.要求得平行四边形的面积,只需知道一条线段的长度.这条线段可以是()A. B. C. D.11.如果一个扇形的弧长是π,半径是6,那么此扇形的圆心角为()A.40° B.45° C.60° D.80°12.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、2、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是()A. B.C. D.二、填空题(每题4分,共24分)13.△ABC中,∠C=90°,tanA=,则sinA+cosA=_____.14.已知关于x的一元二次方程的常数项为零,则k的值为_____.15.二次函数的图象与y轴的交点坐标是________.16.如图,Rt△ABC中,∠ACB=90°,BC=3,tanA=,将Rt△ABC绕点C顺时针旋转90°得到△DEC,点F是DE上一动点,以点F为圆心,FD为半径作⊙F,当FD=_____时,⊙F与Rt△ABC的边相切.17.若二次函数的图象与x轴交于A,B两点,则的值为______.18.如图,在中,,是边上一点,过点作,垂足为,,,,求的长.三、解答题(共78分)19.(8分)如图1,在中,是的直径,交于点,过点的直线交于点,交的延长线于点.(1)求证:是的切线;(2)若,试求的长;(3)如图2,点是弧的中点,连结,交于点,若,求的值.20.(8分)为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.21.(8分)已知关于x的一元二次方程(a+c)x2+2bx+a-c=0,其中a、b、c分别为△ABC三边的长.(1)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)若△ABC是正三角形,试求这个一元二次方程的根.22.(10分)如图,要建一个底面积为130平方米的鸡场,鸡场一边靠墙(墙长16米),并在与墙平行的一边开道1米宽的门,现有能围成32米长的木板.求鸡场的长和宽各是多少米?23.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.24.(10分)如图,双曲线(>0)与直线交于点A(2,4)和B(a,2),连接OA和OB.(1)求双曲线和直线关系式;(2)观察图像直接写出:当>时,的取值范围;(3)求△AOB的面积.25.(12分)某市百货商店服装部在销售中发现“米奇”童装平均每天可售出件,每件获利元.为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价元,则平均每天可多售出件,要想平均每天在销售这种童装上获利元,那么每件童装应降价多少元?26.⊙O直径AB=12cm,AM和BN是⊙O的切线,DC切⊙O于点E且交AM于点D,交BN于点C,设AD=x,BC=y.(1)求y与x之间的关系式;(2)x,y是关于t的一元二次方程2t2﹣30t+m=0的两个根,求x,y的值;(3)在(2)的条件下,求△COD的面积.

参考答案一、选择题(每题4分,共48分)1、C【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【详解】解:这组数据的平均数、方差和标准差都与被涂污数字有关,而这组数据的中位数为46,与被涂污数字无关.故选:C.【点睛】本题考查了方差:它也描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念.掌握以上知识是解题的关键.2、C【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【详解】A、由抛物线的开口向下知,与轴的交点在轴的正半轴上,可得,因此,故本选项正确,不符合题意;B、由抛物线与轴有两个交点,可得,故本选项正确,不符合题意;C、由对称轴为,得,即,故本选项错误,符合题意;D、由对称轴为及抛物线过,可得抛物线与轴的另外一个交点是,所以,故本选项正确,不符合题意.故选C.【点睛】本题考查了二次函数图象与系数的关系.会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.3、D【分析】直接利用中心对称图形的性质得出答案.【详解】解:两个三角形(B、F、C、E四点共线)是中心对称图形,则对称中心是:线段FC的中点.故选:D.【点睛】本题比较容易,考查识别图形的中心对称性.要注意正确区分轴对称图形和中心对称图形,中心对称是要寻找对称中心,旋转180度后重合.4、B【解析】试题解析:在抛物线顶点式方程中,抛物线的对称轴方程为x=h,∴抛物线的对称轴是直线x=-2,故选B.5、B【分析】因为点P运动轨迹是折线,故分两种情况讨论:当点P在A—D之间或当点P在D—C之间,分别计算其面积,再结合二次函数图象的基本性质解题即可.【详解】分两种情况讨论:当点Q在A—D之间运动时,,图象为开口向上的抛物线;当点Q在D—C之间运动时,如图Q1,P1位置,由二次函数图象的性质,图象为开口向下的抛物线,故选:B.【点睛】本题考查二次函数图象基本性质、其中涉及分类讨论法、等腰直角三角形的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.6、D【分析】平面直角坐标系中任意一点,关于原点对称的点的坐标是,即关于原点对称的点的横纵坐标都互为相反数,这样就可以确定其对称点所在的象限.【详解】∵点关于原点的对称点的坐标是,∴点关于原点的对称点在第四象限.故选:D.【点睛】本题比较容易,考查平面直角坐标系中关于原点对称的两点的坐标之间的关系,是需要识记的内容.7、B【解析】由等腰三角形“三线合一”的性质可得EF=BF,根据H是正方形对角线BD的中点可得CH=DH=BH,即可证明HF是△BDE的中位线,可得HF=DE,HF//DE;由BD=DE即可得HC=HF;利用直角三角形两锐角互余的关系可得∠CBE=∠CDG,利用ASA可证明△BCE≌△DCG,可得DG=BE,可判定DG=2EF,由正方形的性质可得BD2=2CD2,根据∠CBE=∠CDG,∠E是公共角可证明△BCE∽△DFE,即可得,即BE·DF=DE·BC,可对③进行判定,根据等底等高的三角形面积相等可对④进行判定,综上即可得答案.【详解】∵BD=DE,DF⊥BE,∴EF=BF,∵H是正方形ABCD对角线BD的中点,∴CH=DH=BH=BD,∴HF是△BDE的中位线,∴HF=DE=BD=CH,HF//DE,故①⑤正确,∵∠CBE+∠E=90°,∠FDE+∠E=90°,∴∠CBE=∠FDE,又∵CD=BC,∠DCG=∠BCE=90°,∴△BCE≌△DCG,∴DG=BE,∵BE=2EF,∴DG=2EF,故②正确,∵∠CBE=∠FDE,∠E=∠E,∴△BCE∽△DFE,∴,即BE·DF=DE·BC,∵BD2=CD2+BC2=2CD2∴DE2=2CD2,∴DE·BC≠2CD2,∴BE·DF≠2CD2,故③错误,∵DH=BD,∴S△DFH=S△DFB,∵BF=BE,∴S△DFB=S△BDE,∴S△DFH=S△BDE,即S△BDE=4S△DFH,故④正确,综上所述:正确的结论有①②④⑤,共4个,故选B.【点睛】本题考查正方形的性质、等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及三角形中位线的性质,综合性较强,熟练掌握所学性质及定理是解题关键.8、D【详解】根据题意有:xy=24;且根据x,y实际意义x、y应大于0,其图象在第一象限.故选D.9、A【解析】根据一元二次方程的定义进行解答即可.【详解】①ax2+bx+c=0,当a=0时,该方程不是一元二次方程;②x2=0符合一元二次方程的定义;③符合一元二次方程的定义;④是分式方程.综上所述,其中一元二次方程的是②和③.故选A.【点睛】本题考查了一元二次方程的定义,利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.10、C【分析】根据图形证明△AOE≌△COG,作KM⊥AD,证明四边形DKMN为正方形,再证明Rt△AEH≌Rt△CGF,Rt△DHG≌Rt△BFE,设正方形边长为a,CG=MN=x,根据正方形的性质列出平行四边形的面积的代数式,再化简整理,即可判断.【详解】连接AC,EG,交于O点,∵四边形是平行四边形,四边形是正方形,∴GO=EO,AO=CO,又∠AOE=∠COG∴△AOE≌△COG,∴GC=AE,∵NE∥AD,∴四边形AEND为矩形,∴AE=DN,∴DN=GC=MN作KM⊥AD,∴四边形DKMN为正方形,在Rt△AEH和Rt△CGF中,∴Rt△AEH≌Rt△CGF,∴AH=CF,∵AD-AH=BC-CF∴DH=BF,同理Rt△DHG≌Rt△BFE,设CG=MN=x,设正方形边长为a则S△HDG=DH×x+DG×x=S△FBES△HAE=AH×x=S△GCFS平行四边形EFGH=a2-2S△HDG-2S△HAE=a2-(DH+DG+AH)×x,∵DG=a-x∴S平行四边形EFGH=a2-(a+a-x)×x=a2-2ax+x2=(a-x)2故只需要知道a-x就可以求出面积BE=a-x,故选C.【点睛】此题主要考查正方形的性质,解题的关键是根据题意设出字母,表示出面积进行求解.11、A【解析】试题分析:∵弧长,∴圆心角.故选A.12、D【解析】画树状图展示所有16种等可能的结果数,找出两次抽取的卡片上数字之和为偶数的结果数,然后根据概率公式求解.【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之和为偶数的结果数为10,所以两次抽取的卡片上数字之和为偶数的概率.故选D.【点睛】本题考查了列表法与树状图法.利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.二、填空题(每题4分,共24分)13、【解析】∵在△ABC中,∠C=90°,,∴可设BC=4k,AC=3k,∴由勾股定理可得AB=5k,∴sinA=,cosA=,∴sinA+cosA=.故答案为.14、1【分析】由一元二次方程(k﹣1)x1+6x+k1﹣3k+1=0的常数项为零,即可得,继而求得答案.【详解】解:∵一元二次方程(k﹣1)x1+6x+k1﹣3k+1=0的常数项为零,∴,由①得:(k﹣1)(k﹣1)=0,解得:k=1或k=1,由②得:k≠1,∴k的值为1,故答案为:1.【点睛】本题是对一元二次方程根的考查,熟练掌握一元二次方程知识是解决本题的关键.15、【分析】求出自变量x为1时的函数值即可得到二次函数的图象与y轴的交点坐标.【详解】把代入得:,∴该二次函数的图象与y轴的交点坐标为,故答案为.【点睛】本题考查了二次函数图象上点的坐标特征,在y轴上的点的横坐标为1.16、或【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF=;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为⊙F的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,∴DF=HF,∵Rt△ABC中,∠ACB=90°,BC=3,tanA==,∴AC=4,AB=5,将Rt△ABC绕点C顺时针旋转90°得到△DEC,∴∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,∵FH⊥AC,CD⊥AC,∴FH∥CD,∴△EFH∽△EDC,∴=,∴=,解得:DF=;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,∵∠A=∠D,∠AEH=∠DEC∴∠AHE=90°,∴点H为切点,DH为⊙F的直径,∴△DEC∽△DBH,∴=,∴=,∴DH=,∴DF=,综上所述,当FD=或时,⊙F与Rt△ABC的边相切,故答案为:或.【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.17、﹣4【解析】与x轴的交点的家横坐标就是求y=0时根,再根据求根公式或根与系数的关系,求出两根之和与两根之积。把要求的式子通分代入即可。【详解】设y=0,则,∴一元二次方程的解分别是点A和点B的横坐标,即,,∴,∴,故答案为:.【点睛】根据求根公式可得,若,是方程的两个实数根,则18、.【分析】在中,根据求得CE,在中,根据求得BC,最后将CE,BC的值代入即可.【详解】解:在中,,.在中,,.的长为.【点睛】本题考查了解直角三角形,熟练掌握三角函数定义是解题的关键.三、解答题(共78分)19、(1)证明见解析(2)(3)【分析】(1)连接半径,根据已知条件结合圆的基本性质可推出,即,即可得证结论;(2)设,根据已知条件列出关于的方程、解方程即可得到圆心角,再求得半径,然后利用弧长公式即可得解;(3)由,设,然后根据已知条件利用圆的一些性质、勾股定理以及三角形的不同求法分别表示出、,再利用平行线的判定以及相似三角形的判定和性质即可求得结论.【详解】解:(1)连结,如图:∵是的直径∴∴∵∴∵∴∴∵在圆上∴是的切线.(2)设∵∴∴∵在中,∴∴∴∵∴∴连结,过作于点,如图:∵点是的中点∴∴设∴∴∴∵在中,∴∵,∴∴∴.故答案是:(1)证明见解析(2)(3)【点睛】本题考查了圆的相关性质、切线的判定、等腰三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、直角三角形的相关性质、锐角三角函数、三角形的外角性质以及弧长的计算公式等,综合性较强,但难度不大属中档题型.20、(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.21、(1)直角三角形;(2).x1=-1,x2=0【解析】试题分析:(1)根据方程有两个相等的实数根得出△=0,即可得出a2=b2+c2,根据勾股定理的逆定理判断即可;(2)根据等边进行得出a=b=c,代入方程化简,即可求出方程的解.解:(1)△ABC是直角三角形,理由是:∵关于x的一元二次方程(a+c)x2﹣2bx+(a﹣c)=0有两个相等的实数根,∴△=0,即(﹣2b)2﹣4(a+c)(a﹣c)=0,∴a2=b2+c2,∴△ABC是直角三角形;(2)∵△ABC是等边三角形,∴a=b=c,∴方程(a+c)x2﹣2bx+(a﹣c)=0可整理为2ax2﹣2ax=0,∴x2﹣x=0,解得:x1=0,x2=1.考点:根的判别式;等边三角形的性质;勾股定理的逆定理.22、鸡场的长和宽分别为13m,10m.【分析】设鸡场的垂直于墙的一边长为x,而与墙平行的一边开一道1m宽的门,现有能围成32m长的木板,那么平行于墙的一边长为(32-2x+1),而鸡场的面积为130m2,由此即可列出方程,解方程就可以解决问题.【详解】解:设鸡场的垂直于墙的一边长为x,

依题意得(32-2x+1)x=130,

2x2-33x+130=0,

(x-10)(2x-13)=0,

∴x1=10或x2=6.5,

当x1=10时,32-2x+1=13<16;

当x2=6.5时,32-2x+1=20>16,不合题意舍去.

答:鸡场的长和宽分别为13m,10m.【点睛】本题考查一元二次方程的应用,解题关键是弄懂题意,找出题目中的等量关系,要注意判断所求的解是否符合题意,舍去不合题意的解.23、(1)相切,理由见解析;(2)DE=.【分析】(1)连接AD,OD,根据已知条件证得OD⊥DE即可;(2)根据勾股定理计算即可.【详解】解:(1)相切,理由如下:连接AD,OD,∵AB为⊙O的直径,∴∠ADB=90°.∴AD⊥BC.∵AB=AC,∴CD=BD=BC.∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠ODE=∠CED=90°.∴OD⊥DE.∴DE与⊙O相切.(2)由(1)知∠ADC=90°,∴在Rt△ADC中,由勾股定理得,AD==1.∵SACD=AD•CD=AC•DE,∴×1×3=×5DE.∴DE=.【点睛】本题主要考查直线与圆的位置关系,等腰三角形的性质、勾股定理等知识.正确大气层造辅助线是解题的关键.24、(1),;(2)0<x<2或x>4;(3)△AOB的面积是1.【分析】(1)利用待定系数法先求出反比例函数的解析式,继而求得点B坐标,再结合A、B坐标利用待定系数法即可求出直线解析式;(2)根据图象双曲线在直线上方的部分即可得出答案;(3)过点A作y轴的垂线,垂足为D,过点B作x轴的垂线,垂足为E,两线交于点F,然后用四边形的面积减去三个三角形的面积即可求得答案.【详解】(1)∵点A(2,4)在双曲线上∴∵点B(a,2)也在双曲线,∴,∴a=4(经检验a=4是方程的解),∵点A(2,4)和点B(4,2)在直线上,∴,解得:,∴直线关系式为;(2)观察图象可得,当>时,x的取值范围是:0<x<2或x>4;(3)过点A作y轴的垂线,垂足为D,过点B作x轴的垂线,垂足为E,两线交于点F,则有OD=4,OE=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论