2024届河北省教考联盟数学高二下期末质量跟踪监视模拟试题含解析_第1页
2024届河北省教考联盟数学高二下期末质量跟踪监视模拟试题含解析_第2页
2024届河北省教考联盟数学高二下期末质量跟踪监视模拟试题含解析_第3页
2024届河北省教考联盟数学高二下期末质量跟踪监视模拟试题含解析_第4页
2024届河北省教考联盟数学高二下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省教考联盟数学高二下期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知点为双曲线的对称中心,过点的两条直线与的夹角为,直线与双曲线相交于点,直线与双曲线相交于点,若使成立的直线与有且只有一对,则双曲线离心率的取值范围是()A. B. C. D.2.已知向量,,则()A. B. C. D.3.在平面直角坐标系中,曲线(为参数)上的点到直线的距离的最大值为()A. B. C. D.4.已知函数的导函数为,满足,且,则不等式的解集为()A. B. C. D.5.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为()A.0.12 B.0.42 C.0.46 D.0.886.若函数在区间上单调递减,则实数t的取值范围是()A. B. C. D.7.“读整本的书”是叶圣陶语文教育思想的重要组成部分,整本书阅读能够扩大阅读空间。某小学四年级以上在开学初开展“整本书阅读活动”,其中四年班老师号召本班学生阅读《唐诗三百首》并背诵古诗,活动开展一个月后,老师抽四名同学(四名同学编号为)了解能够背诵古诗多少情况,四名同学分别对老师做了以下回复:说:“比背的少”;说:“比背的多”;说:“我比背的多";说:“比背的多”.经过老师测验发现,四名同学能够背诵古诗数各不相同,四名同学只有一个说的正确,而且是背诵的最少的一个.四名同学的编号按能够背诵数量由多到少组成的四位数是()A. B. C. D.8.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A.甲地:总体均值为3,中位数为4 B.乙地:总体均值为1,总体方差大于0C.丙地:中位数为2,众数为3 D.丁地:总体均值为2,总体方差为39.已知定义在R上的奇函数,满足,且在上是减函数,则()A. B.C. D.10.设是函数的导函数,则的值为()A. B. C. D.11.已知过点作曲线的切线有且仅有1条,则实数的取值是()A.0 B.4 C.0或-4 D.0或412.设是虚数单位,复数为实数,则实数的值为()A.1 B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在实数集上的偶函数在区间上是增函数.若存在实数,对任意的,都有,则正整数的最大值为__________.14.已知全集,集合,,则_______.15.不等式<恒成立,则a的取值范围是________.16.在中,内角所对的边分别为,且的外接圆半径为1,若,则的面积为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二项式.(1)当时,求二项展开式中各项系数和;(2)若二项展开式中第9项,第10项,第11项的二项式系数成等差数列,且存在常数项,①求n的值;②记二项展开式中第项的系数为,求.18.(12分)在平面直角坐标系中,点到直线:的距离比到点的距离大2.(1)求点的轨迹的方程;(2)请指出曲线的对称性,顶点和范围,并运用其方程说明理由.19.(12分)在一个圆锥内作一个内接等边圆柱(一个底面在圆锥的底面上,且轴截面是正方形的圆柱),再在等边圆柱的上底面截得的小圆锥内做一个内接等边圆柱,这样无限的做下去.(1)证明这些等边圆柱的体积从大到小排成一个等比数列;(2)已知这些等边圆柱的体积之和为原来圆锥体积的,求最大的等边圆柱的体积与圆锥的体积之比.20.(12分)老师要从7道数学题中随机抽取3道考查学生,规定至少能做出2道即合格,某同学只会做其中的5道题.(I)求该同学合格的概率;(II)用X表示抽到的3道题中会做的题目数量,求X分布列及其期望.21.(12分)已知,命题对任意,不等式成立;命题存在,使得成立.(1)若p为真命题,求m的取值范围;(2)若p且q为假,p或q为真,求m的取值范围;22.(10分)已知函数.(1)当时,解不等式;(2)若,求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

根据双曲线渐近线以及夹角关系列不等式,解得结果【题目详解】不妨设双曲线方程为,则渐近线方程为因为使成立的直线与有且只有一对,所以从而离心率,选A.【题目点拨】本题考查求双曲线离心率取值范围,考查综合分析求解能力,属较难题.2、A【解题分析】

先求出的坐标,再根据向量平行的坐标表示,列出方程,求出.【题目详解】由得,解得,故选A.【题目点拨】本题主要考查向量的加减法运算以及向量平行的坐标表示.3、B【解题分析】

将直线,化为直角方程,根据点到直线距离公式列等量关系,再根据三角函数有界性求最值.【题目详解】可得:根据点到直线距离公式,可得上的点到直线的距离为【题目点拨】本题考查点到直线距离公式以及三角函数有界性,考查基本分析求解能力,属中档题.4、A【解题分析】

令,这样原不等式可以转化为,构造新函数,求导,并结合已知条件,可以判断出的单调性,利用单调性,从而可以解得,也就可以求解出,得到答案.【题目详解】解:令,则,令,则,在上单调递增,,故选A.【题目点拨】本题考查了利用转化法、构造函数法、求导法解决不等式解集问题,考查了数学运算能力和推理论证能力.5、D【解题分析】由题意知,甲、乙都不被录取的概率为(1-0.6)(1-0.7)=0.12.∴至少有一人被录取的概率为1-0.12=0.88.故选D.考点:相互独立事件的概率.6、A【解题分析】

由函数在区间上单调递减,得到不等式在恒成立,再根据二次函数根的分布,求实数t的取值范围.【题目详解】因为函数在区间上单调递减,所以在恒成立,所以即解得:.【题目点拨】本题考查利用导数研究函数的单调性、利用二次函数根的分布求参数取值范围,考查逻辑思维能力和运算求解能力,求解时要充分利用二次函数的图象特征,把恒成立问题转化成只要研究两个端点的函数值正负问题.7、A【解题分析】

分别假设四位同学是说正确的人,排除矛盾情况,推理得到答案【题目详解】假设1正确,其他都错误,则1最少,比背的少,比背的少,3比4少,3比2少顺序为:4231假设2正确,其他错误,则2最少,根据1知:2比4多,矛盾,排除假设3正确,其他错误,则3最少,根据2知:1比3少,矛盾,排除假设4正确,其他错误,则4最少,根据3知:3比4少,矛盾,排除故答案选A【题目点拨】本题考查了逻辑推理,依次假设正确的人,根据矛盾排除选项是解题的关键.8、D【解题分析】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差9、D【解题分析】

根据条件,可得函数周期为4,利用函数期性和单调性之间的关系,依次对选项进行判断,由此得到答案。【题目详解】因为,所以,,可得的周期为4,所以,,.又因为是奇函数且在上是减函数,所以在上是减函数,所以,即,故选D.【题目点拨】本题主要考查函数值的大小比较,根据条件求出函数的周期性,结合函数单调性和奇偶性之间的关系是解决本题的关键。10、C【解题分析】分析:求导,代值即可.详解:,则.故选:C.点睛:对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.11、C【解题分析】

求出导函数,转化求解切线方程,通过方程有两个相等的解,推出结果即可.【题目详解】设切点为,且函数的导数,所以,则切线方程为,切线过点,代入得,所以,即方程有两个相等的解,则有,解得或,故选C.【题目点拨】本题主要考查了导数的几何意义的应用,其中解答中熟记导数的几何意义,求解曲线在某点处的切线方程是解答的关键,着重考查了转化思想,以及推理与运算能力,属于基础题.12、C【解题分析】

由复数代数形式的乘除运算化简,再由虚部为0可得答案.【题目详解】解:,复数为实数,可得,,故选:C.【题目点拨】本题主要考查复数代数形式的乘除运算法则,属于基础题,注意运算准确.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:先根据单调性得对任意的都成立,再根据实数存在性得,即得,解得正整数的最大值.详解:因为偶函数在区间上是增函数,对任意的,都有,所以对任意的都成立,因为存在实数,所以即得,因为成立,,所以正整数的最大值为4.点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.14、【解题分析】由,得:,则,故答案为.15、(-2,2)【解题分析】

利用指数函数的单调性可以得到一元二次不等式恒成立问题,再根据判别式即可求得结果.【题目详解】由指数函数的性质知y=x是减函数,因为<恒成立,所以x2+ax>2x+a-2恒成立,所以x2+(a-2)x-a+2>0恒成立,所以Δ=(a-2)2-4(-a+2)<0,即(a-2)(a-2+4)<0,即(a-2)(a+2)<0,故有-2<a<2,即a的取值范围是(-2,2).【题目点拨】本题考查不等式恒成立问题,利用指数函数的单调性将指数不等式转化为一元二次不等式是本题的关键,属基础题.16、【解题分析】

分析:由正弦定理可把其中一边化为角,从而由及公式求得面积.

详解:由题意得,即,∴,故答案为.点睛:正弦定理:,利用它把三角形的边角与外接圆半径建立联系,这样可得三角形面积为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)①14,②【解题分析】

(1)令即可;(2)①或,再分别讨论是否符合题意;②,,再利用二项式定理逆用计算即可.【题目详解】(1)当时,令,得二项式的展开式中各项系数和为.(2)①由题意知,,即,即,即,解得或.当时,,是常数项,符合题意;当时,若是常数项,则,不符合题意.故n的值为14.②由①知,,则,所以.因为,所以.所以.【题目点拨】本题考查二项式定理的综合应用,涉及到各项系数和、等差数列、组合数的计算,考查学生的计算能力,是一道中档题18、(1);(2)对称性:曲线关于轴对称;顶点:;范围:曲线在直线右侧,且右上方和右下方无限延伸.理由见解析【解题分析】

(1)设,根据题意列出等量关系,化简整理,即可得出结果;(2)根据由抛物线向右平移一个单位得到,结合抛物线的性质,即可得出结果.【题目详解】(1)由题意可得:动点到直线的距离与到的距离相等,设,则,化简整理,可得,所以点的轨迹的方程为;(2)由(1)得的方程为;即由抛物线向右平移一个单位得到;所以曲线也关于轴对称,顶点为,范围为,.【题目点拨】本题主要考查求轨迹方程,以及轨迹的性质,熟记轨迹方程的求法,以及抛物线的性质即可,属于常考题型.19、(1)证明见解析;(2)【解题分析】

(1)求出第一个等边圆柱的体积,设第个等边圆柱的底面半径为,其外接圆锥的底面半径为,高为,则其体积,进一步求得第个等边圆柱的体积,作比可得这些等边圆柱的体积从大到小排成一个等比数列;(2)由这些等边圆柱的体积之和为原来圆锥体积的可得与的关系,则答案可求.【题目详解】(1)证明:如图,设圆锥的底面半径为,高为,内接等边圆柱的底面半径为,则由三角形相似可得:,可得.其体积.设第个等边圆柱的底面半径为,其外接圆锥的底面半径为,高为,则其体积,再设第个等边圆柱的底面半径为,则其外接圆锥的底面半径为,高为,则第个等边圆柱的体积.为定值,则这些等边圆柱的体积从大到小排成一个以为首项,以为公比的等比数列;(2)解:原来圆锥的体积为,这些等边圆柱的体积之和为.由,得,.则最大的等边圆柱的体积为,圆锥的体积为,体积之比为.【题目点拨】本题考查圆柱、圆锥体积的求法,考查等比数列的确定及所有项和公式的应用,是中档题.20、(1).(2)分布列见解析;.【解题分析】分析:(1)设“该同学成绩合格”为事件;(2)可能取的不同值为1,2,3,时,时,时.详解:(1)设“该同学成绩合格”为事件(2)解:可能取的不同值为1,2,3当时当时=当时=的分布列为123点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论