版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省无锡市江阴市数学高二第二学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆截直线所得的弦长为,则()A. B. C. D.22.函数零点所在的大致区间为()A. B. C.和 D.3.有本相同的数学书和本相同的语文书,要将它们排在同一层书架上,并且语文书不能放在一起,则不同的放法数为()A. B. C. D.4.已知是虚数单位,则()A. B. C. D.5.椭圆为参数)的离心率是()A. B. C. D.6.《中国诗词大会》(第二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有()A.288种 B.144种 C.720种 D.360种7.中国古代数学名著《九章算术•商功》中记载了一种名为“堑堵”的几何体:“邪解立方得二堑堵邪解堑堵”錾堵是一个长方体沿不在同一表面上的相对两棱斜截所得的立体图形其正视图和俯视图(直角三角形)如图所示,则该“堑堵”的外接球的大圆面积为()A. B. C. D.8.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是()A.512 B.12 C.79.已知定义在R上的偶函数,在时,,若,则a的取值范围是()A.B.C.D.10.在中,,,,则的面积为()A.15 B. C.40 D.11.已知是函数的零点,是函数的零点,且满足,则实数的最小值是().A.-1 B. C. D.12.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.二、填空题:本题共4小题,每小题5分,共20分。13.直三棱柱的各顶点都在同一球面上,若,,则此球的表面积等于。14.已知函数,若存在实数,满足,且,则的取值范围是______________.15.已知两个单位向量,的夹角为,,若,则_____.16.在中,内角,,满足,且,则的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过的有20人,不超过的有10人.在20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过的人与性别有关;(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过的车辆数为,若每次抽取的结果是相互独立的,求的数学期望.参考公式:,其中.参考数据:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82818.(12分)已知函数(其中).(Ⅰ)当时,证明:当时,;(Ⅱ)若有两个极值点.(i)求实数的取值范围;(ii)证明:.19.(12分)选修4-5:不等式选讲(1)已知,且,证明;(2)已知,且,证明.20.(12分)设函数f(x)=,求函数f(x)的单调区间.21.(12分)已知函数.(1)当时,求的极值;(2)是否存在实数,使得与的单调区间相同,若存在,求出的值,若不存在,请说明理由;(3)若,求证:在上恒成立.22.(10分)某市政府为了节约生活用电,计划在本市试行居民生活用电定额管理,即确定一户居民月用电量标准a,用电量不超过a的部分按平价收费,超出a的部分按议价收费为此,政府调查了100户居民的月平均用电量单位:度,以,,,,,分组的频率分布直方图如图所示.根据频率分布直方图的数据,求直方图中x的值并估计该市每户居民月平均用电量的值;用频率估计概率,利用的结果,假设该市每户居民月平均用电量X服从正态分布估计该市居民月平均用电量介于度之间的概率;利用的结论,从该市所有居民中随机抽取3户,记月平均用电量介于度之间的户数为,求的分布列及数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
将圆的方程化为标准方程,结合垂径定理及圆心到直线的距离,即可求得的值.【题目详解】圆,即则由垂径定理可得点到直线距离为根据点到直线距离公式可知,化简可得解得故选:A【题目点拨】本题考查了圆的普通方程与标准方程的转化,垂径定理及点到直线距离公式的应用,属于基础题.2、B【解题分析】
判断函数单调递增,计算,得到答案.【题目详解】函数在上单调递增,,,故函数在有唯一零点.故选:.【题目点拨】本题考查了零点存在定理,确定函数的单调性是解题的关键.3、A【解题分析】由题意,故选A.点睛:本题是不相邻问题,解决方法是“插空法”,先把数学书排好(由于是相同的数学书,因此只有一种放法),再在数学书的6个间隔(含两头)中选3个放语文书(语文书也相同,只要选出位置即可),这样可得放法数为,如果是5本不同的数学书和3本不同的语文书,则放法为.4、B【解题分析】
根据复数的乘法运算法则,直接计算,即可得出结果.【题目详解】.故选B【题目点拨】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.5、A【解题分析】
先求出椭圆的普通方程,再求其离心率得解.【题目详解】椭圆的标准方程为,所以c=.所以e=.故答案为A【题目点拨】(1)本题主要考查参数方程和普通方程的互化,考查椭圆的简单几何性质,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)在椭圆中,6、B【解题分析】
根据题意分步进行分析:①用倍分法分析《将进酒》,《望岳》和另外两首诗词的排法数目;②用插空法分析《山居秋暝》与《送杜少府之任蜀州》的排法数目,由分步计数原理计算可得答案【题目详解】根据题意分步进行分析:①将《将进酒》,《望岳》和另外两首诗词的首诗词全排列,则有种顺序《将进酒》排在《望岳》的前面,这首诗词的排法有种②,这首诗词排好后,不含最后,有个空位,在个空位中任选个,安排《山居秋暝》与《送杜少府之任蜀州》,有种安排方法则后六场的排法有种故选【题目点拨】本题考查的是有关限制条件的排列数的问题,第一需要注意先把不相邻的元素找出来,将剩下的排好,这里需要注意定序问题除阶乘,第二需要将不相邻的两个元素进行插空,利用分步计数原理求得结果,注意特殊元素特殊对待。7、B【解题分析】
首先根据题意得到“堑堵”是半个长方体的直三棱柱,再求其外接球的大圆面积即可.【题目详解】由题知:“堑堵”是半个长方体的直三棱柱,如图所示:设外接球大圆的半径为,.,所以外接球的大圆面积为.故选:B【题目点拨】本题主要考查三棱柱的外接球,同时考查三视图的直观图,属于中档题.8、C【解题分析】试题分析:由题意可知,事件A与事件B是相互独立的,而事件A、B中至少有一件发生的事件包含AB、AB、AB,又P(A)=12,考点:相互独立事件概率的计算.9、B【解题分析】试题分析:当时,,,∴函数在上为增函数,∵函数是定义在R上的偶函数,∴,∴,∴,即.考点:函数的单调性、奇偶性、解不等式.10、B【解题分析】
先利用余弦定理求得,然后利用三角形面积公式求得三角形的面积.【题目详解】由余弦定理得,解得,由三角形面积得,故选B.【题目点拨】本小题主要考查余弦定理解三角形,考查三角形的面积公式,属于基础题.11、A【解题分析】
先根据的单调性确定出最小值从而确定出的值,再由不等式即可得到的范围,根据二次函数零点的分布求解出的取值范围.【题目详解】因为,所以当时,,当时,,所以在上递减,在上递增,所以,所以,又因为,所以,因为对应的,且有零点,(1)当时,或,所以,所以,所以,(2)当时,或,此时,所以,综上可知:,所以.故选:A.【题目点拨】本题考查利用导数判断函数的零点以及根据二次函数的零点分布求解参数范围,属于综合性问题,难度较难.其中处理二次函数的零点分布问题,除了直接分析还可以采用画图象的方法进行辅助分析.12、A【解题分析】
准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.【题目详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心.,又点在圆上,,即.,故选A.【题目点拨】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.二、填空题:本题共4小题,每小题5分,共20分。13、20π【解题分析】
14、【解题分析】
根据函数的性质得出之间的关系,从而可求得取值范围.【题目详解】设,则与的图象的交点的横坐标依次为(如图),∵,且,,∴,,∴,,∴,∵,∴,故答案为.【题目点拨】本题考查函数零点与方程根的分布,解题关键是确定之间的关系及范围.如本题中可结合图象及函数解析式得出.15、2;【解题分析】
试题分析:由可得,即,故填2.考点:1.向量的运算.2.向量的数量积.16、【解题分析】
利用二倍角公式得出,再利用正弦定理转化,后用余弦定理求得,再利用正弦定理即可【题目详解】由得,,,根据正弦定理可得,,根据余弦定理【题目点拨】本题考查解三角形中正弦定理进行边角转化,余弦定理求角,以及三角形中两角和正弦与第三角正弦的关系三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有;(2).【解题分析】分析:(1)根据公示计算得到卡方值,作出判断即可;(2)根据条件可知由公式得到期望值.详解:(1)平均车速超过人数平均车速不超过人数合计男性驾驶员人数201030女性驾驶员人数51520合计252550∵,∴所以有的把握认为平均车速超过与性别有关.(2)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随即抽取1辆,驾驶员为女性且车速不超过的车辆的概率为.所以的可能取值为0,1,2,3,且,.方法点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布则此随机变量的期望可直接利用这种典型分布的期望公式求得.18、(Ⅰ)见解析(Ⅱ)(i)(ii)见解析【解题分析】
(Ⅰ)将代入解析式,并求得导函数及,由求得极值点并判断出单调性,并根据单调性可求得的最小值,由即可证明在上单调递增,从而由即可证明不等式成立;(Ⅱ)(i)由极值点意义可知有两个不等式实数根,分离参数可得,构造函数,并求得,分类讨论的符号及单调情况,即可确定的最小值,进而由函数图像的交点情况确定的取值范围;(ii)由(i)中的两个交点可得,代入解析式并求得且令,分离参数可得并代入中,求得,从而证明在上单调递增,即可由单调性证明不等式成立.【题目详解】(Ⅰ)当时,,,由解得.当时,当时所以在上单调递减,在上单调递增,,恒成立,所以在上单调递增,所以,原不等式得证.(Ⅱ)(i)若有两个极值点,则有两个根,又显然不是方程的根,所以方程有两个根.令,,当时,,且,单调递减;当时,,单调递减;当时,,单调递增;,且,,用直线截此图象,所以当,即时满足题意.(ii)证明:由(i)知,,∴,则,,所以在上单调递增,所以,即.原题得证.【题目点拨】本题考查了由导数证明不等式成立,导数与函数单调性、极值点和最值的综合应用,分离参数法与构造函数法的综合应用,函数极值点与零点、函数图像交点的关系,综合性强,属于难题.19、(1)见解析(2)见解析【解题分析】
(1)由展开利用基本不等式证明即可;(2)由,结合条件即可得解.【题目详解】证明:(1)因为,当时等号成立.(2)因为,又因为,所以,,,∴.当时等号成立,即原不等式成立.【题目点拨】本题主要考查了基本不等式的应用,需要进行配凑,具有一定的技巧性,属于中档题.20、单调递增区间是[1,+∞),单调递减区间是(-∞,0),(0,1]【解题分析】
先求出f(x)的导数f′(x),令f′(x)=0,得出零点.讨论零点两侧导数正负即可解出答案(注意定义域)【题目详解】解:f′(x)=-ex+ex=ex,由f′(x)=0,得x=1.因为当x<0时,f′(x)<0;当0<x<1时,f′(x)<0;当x>1时,f′(x)>0.所以f(x)的单调递增区间是[1,+∞),单调递减区间是(-∞,0),(0,1].【题目点拨】本题主要考察利用导数求函数单调区间,属于基础题.21、(1)极小值为,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年酒店客户预订服务协议样本版B版
- 二零二五年度二手房贷款购买房屋抗震性能检测合同3篇
- 二零二五年度办公租赁合同违约责任明确3篇
- 2025年度物业商铺装修施工与设施设备维护保养服务协议3篇
- 2024年金融行业销售代表合同3篇
- 网络购物的课课程设计
- 二零二五年婚庆场地出租与婚礼场地布置与礼仪服务合同模板3篇
- 2024建设工程施工合同示范文本GF
- 继电器课程设计前言
- 2024年四川绵阳初中学业水平考试英语试卷真题(含答案详解)
- 2025年观看反腐倡廉警示教育片心得体会范文
- 2025年中国烟草总公司湖北省公司校园招聘227人高频重点提升(共500题)附带答案详解
- 2024版带货主播电商平台合作服务合同范本3篇
- 工程设计-《工程勘察设计收费标准》(2002年修订本)-完整版
- 河南省郑州市2023-2024学年高二上学期期末考试政治试题 附答案
- 福建省泉州市2022-2023学年高一上学期期末教学质量监测化学试题(含答案)
- 公司组织架构图(可编辑模版)
- 煤炭质量分级及低位发热量计算
- 临床试验样本量简易计算器
- 带电作业车库技术规范书
- 中医药治疗躯体形式障碍的研究进展
评论
0/150
提交评论