版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省定远二中数学高二第二学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用反证法证明命题“设为实数,则方程至多有一个实根”时,要做的假设是A.方程没有实根 B.方程至多有一个实根C.方程至多有两个实根 D.方程恰好有两个实根2.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.3.2021年起,新高考科目设置采用“”模式,普通高中学生从高一升高二时将面临着选择物理还是历史的问题,某校抽取了部分男、女学生调查选科意向,制作出如右图等高条形图,现给出下列结论:①样本中的女生更倾向于选历史;②样本中的男生更倾向于选物理;③样本中的男生和女生数量一样多;④样本中意向物理的学生数量多于意向历史的学生数量.根据两幅条形图的信息,可以判断上述结论正确的有()A.1个 B.2个 C.3个 D.4个4.在建立两个变量与的回归模型时,分别选择了4个不同的模型,这四个模型的相关系数分别为0.25、0.50、0.98、0.80,则其中拟合效果最好的模型是()A.模型1 B.模型2 C.模型3 D.模型45.在一组数据为,,…,(,不全相等)的散点图中,若这组样本数据的相关系数为,则所有的样本点满足的方程可以是()A. B.C. D.6.袋中有大小和形状都相同的个白球、个黑球,现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是()A. B. C. D.7.的展开式中只有第5项二项式系数最大,则展开式中含项的系数是()A. B. C. D.8.在等差数列{an}中,,角α顶点在坐标原点,始边与x轴的非负半轴重合,终边经过点(a2,a1+a3),则cos2α=()A. B. C. D.9.在一个棱长为的正方体的表面涂上颜色,将其适当分割成棱长为的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是()A. B. C. D.10.设m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题:①若m∥n,m⊥β,则n⊥β;②若m∥α,m∥β,则α∥β;③若m∥n,m∥β,则n∥β;④若m⊥α,m⊥β,则α⊥β.其中真命题的个数为()A.1B.2C.3D.411.复数的虚部为()A. B. C.1 D.212.已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A. B.2 C. D.5二、填空题:本题共4小题,每小题5分,共20分。13.已知,是单位向量.若,则向量,夹角的取值范围是_________.14.在实数范围内,不等式的解集为___________.15.已知函数,则_________16.直线过抛物线的焦点且与交于、两点,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取件产品作为样本称出它们的质量(单位:毫克),质量值落在的产品为合格品,否则为不合格品。如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图。产品质量/毫克频数(1)根据乙流水线样本的频率分布直方图,求乙流水线样本质量的中位数(结果保留整数);(2)由以上统计数据完成列联表,能否在犯错误的概率不超过的前提下认为产品包装是否合格与两条自动包装流水线的选择有关?甲流水线乙流水线总计合格品不合格品总计下列临界值表仅供参考:参考公式:,其中.18.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则,.19.(12分)已知一家公司生产某种品牌服装的年固定成本为万元,每生产千件需另投入万元.设该公司一年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)20.(12分)已知函数,.(Ⅰ)求函数的单调减区间;(Ⅱ)证明:;(Ⅲ)当时,恒成立,求实数的值.21.(12分)已知,.(1)求证:;(2)若不等式对一切实数恒成立,求实数的取值范围.22.(10分)近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如表所示的列联表:已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.(1)请将列联表补充完整;患心肺疾病不患心肺疾病合计男5女10合计50(2)是否有97.5%的把握认为患心肺疾病与性别有关?说明你的理由;(3)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求的分布列以及数学期望.下面的临界值表供参考:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(参考公式,其中)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
反证法证明命题时,首先需要反设,即是假设原命题的否定成立.【题目详解】命题“设为实数,则方程至多有一个实根”的否定为“设为实数,则方程恰好有两个实根”;因此,用反证法证明原命题时,只需假设方程恰好有两个实根.故选D【题目点拨】本题主要考查反证法,熟记反设的思想,找原命题的否定即可,属于基础题型.2、A【解题分析】
由三视图得出该几何体是一个底面半径为1,高为4的圆柱挖掉右上半圆柱而形成的几何体,在利用体积公式求解,即可得到答案.【题目详解】由三视图可知,该几何体是一个底面半径为1,高为4的圆柱挖掉右上半圆柱而形成的几何体,故该几何体的体积为,故选A.【题目点拨】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.3、B【解题分析】
分析条形图,第一幅图从性别方面看选物理历史的人数的多少,第二幅图从选物理历史的人数上观察男女人数的多少,【题目详解】由图2知样本中的男生数量多于女生数量,由图1有物理意愿的学生数量多于有历史意愿的学生数量,样本中的男生更倾向物理,女生也更倾向物理,所以②④正确,故选:B.【题目点拨】本题考查条形图的认识,只要分清楚条形图中不同的颜色代表的意义即可判别.4、C【解题分析】
相关系数的绝对值越靠近1,拟合效果越好,据此得到答案.【题目详解】四个模型的相关系数分别为0.25、0.50、0.98、0.80相关系数的绝对值越靠近1,拟合效果越好故答案选C【题目点拨】本题考查了相关系数,相关系数的绝对值越靠近1,拟合效果越好.5、A【解题分析】
根据相关系数的概念即可作出判断.【题目详解】∵这组样本数据的相关系数为,∴这一组数据,,…线性相关,且是负相关,∴可排除D,B,C,故选A【题目点拨】本题考查了相关系数,考查了正相关和负相关,考查了一组数据的完全相关性,是基础的概念题.6、D【解题分析】
分别计算第一次取到白球的概率和第一次取到白球且第二次取到白球的概率,根据条件概率公式求得结果.【题目详解】记“第一次取到白球”为事件,则记“第一次取到白球且第二次取到白球”为事件,则在第一次取到白球的条件下,第二次取到白球的概率:本题正确选项:【题目点拨】本题考查条件概率的求解问题,易错点是忽略抽取方式为不放回的抽取,错误的认为每次抽到白球均为等可能事件.7、C【解题分析】
根据只有第5项系数最大计算出,再计算展开式中含项的系数【题目详解】只有第5项系数最大,展开式中含项的系数,系数为故答案选C【题目点拨】本题考查了二项式定理,意在考查学生的计算能力.8、A【解题分析】
利用等差数列的知识可求的值,然后利用的公式可求.【题目详解】由等差数列{an}的性质可知,所以,所以.故选:A.【题目点拨】本题主要考查等差数列的性质和三角函数求值,注意齐次式的转化,侧重考查数学运算的核心素养.9、C【解题分析】
由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据古典概型及其概率的计算公式,即可求解.【题目详解】由题意,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为.故选:C.【题目点拨】本题主要考查了古典概型及其概率的计算公式的应用,其中解答根据几何体的结构特征,得出基本事件的总数和所求事件所包含基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10、A【解题分析】对于①,由直线与平面垂直的判定定理易知其正确;对于②,平面α与β可能平行或相交,故②错误;对于③,直线n可能平行于平面β,也可能在平面β内,故③错误;对于④,由两平面平行的判定定理易得平面α与β平行,故④错误.综上所述,正确命题的个数为1,故选A.11、A【解题分析】
由复数除法化复数为代数形式,根据复数概念可得.【题目详解】因为,所以复数的虚部为,故选:A.【题目点拨】本题考查复数的除法运算,考查复数的概念.属于简单题.12、C【解题分析】
设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【题目详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,,,可得,即为,即,可得.故选C.【题目点拨】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
设向量、的夹角为,在不等式两边平方,利用数量积的运算律和定义求出的取值范围,于此可求出的取值范围.【题目详解】设向量、的夹角为,,两边平方得,、都是单位向量,则有,得,,,因此,向量、的夹角的取值范围是,故答案为.【题目点拨】本题考查平面数量积的运算,考查平面向量夹角的取值范围,在涉及平面向量模有关的计算时,常将等式或不等式进行平方,结合数量积的定义和运算律来进行计算,考查运算求解能力,属于中等题.14、【解题分析】因此解集为.考点:本题主要考查绝对值不等式的解法,考查运用能力.15、3【解题分析】
判断,再代入,利用对数恒等式,计算求得式子的值为.【题目详解】因为,所以,故填.【题目点拨】在计算的值时,先进行幂运算,再进行对数运算,能使运算过程更清晰.16、【解题分析】
本题先根据抛物线焦点坐标可得出值,再根据抛物线的定义和准线,可知,再分类讨论直线斜率存在和不存在两种情况,联立直线和抛物线方程,利用韦达定理最终求得结果.【题目详解】由题得,抛物线的焦点,所以,故.所以抛物线的方程为:.可设,由抛物线的定义可知:.当斜率不存在时,,所以:.当斜率存在时,设直线的斜率为,则直线方程为:.联立,整理得:,所以,所以.综合①②,可知.故答案为:1.【题目点拨】本题主要考查抛物线的标准方程,焦点坐标和准线,结合抛物线的定义,联立方程组,利用韦达定理化简求值,其中需要注意,当直线斜率未知时,需分类讨论斜率存在和不存在两种情况.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)210;(2)详见解析.【解题分析】
(1)先判断中位数在第四组,再根据比例关系得到计算得到答案.(2)完善列联表,计算,与临界值表作比较得到答案.【题目详解】解:(1)因为前三组的频率之和前四组的频率之和所以中位数在第四组,设为由,解得(2)由乙流水线样本的频率分布直方图可知,合格品的个数为,所以,列联表是:甲流水线乙流水线总计合格品不合格品总计所以的观测值故在犯错误的概率不超过的前提下,不能认为产品的包装是否合格与两条自动包装流水线的选择有关.【题目点拨】本题考查了中位数的计算,独立性检验,意在考查学生的计算能力和解决问题的能力.18、(1)26.5(2)①0.6826②见解析【解题分析】试题分析:(1)根据频率分布直方图,直方图各矩形中点值的横坐标与纵坐标的积的和就是所抽取的100包速冻水饺该项质量指标值的样本平均数;(2)①根据服从正态分布,从而求出;②根据题意得,的可能取值为,根据独立重复试验概率公式求出各随机变量对应的概率,从而可得分布列,进而利用二项分布的期望公式可得的数学期望.试题解析:(1)所抽取的100包速冻水饺该项质量指标值的样本平均数为:.(2)①∵服从正态分布,且,,∴,∴落在内的概率是.②根据题意得,;;;;.∴的分布列为01234∴.19、(1)(2)当年产量为9千件时,该公司在这一品牌服装生产中获利最大【解题分析】试题分析:解:(I)当时,;当时,.∴年利润(万元)关于年产量(千件)的函数关系式为(Ⅱ)当时,由,即年利润在上单增,在上单减∴当时,取得最大值,且(万元).当时,,仅当时取“=”综上可知,当年产量为千件时,该公司在这一品牌服装的生产中所获年利润最大,最大值为万元.考点:本试题考查了函数模型在实际生活中的的运用。点评:解决应用题,首先是审清题意,然后利用已知的关系式表述出利润函数:收入-成本=利润。将实际问题转换为代数式,然后利用函数的性质,或者均值不等式来求解最值,但是要注明定义域,属于中档题。20、(1)f(x)的单调递减区间是.(2)证明见解析.(3).【解题分析】
(Ⅰ)求导,由,即可得到函数的单调减区间;(Ⅱ)记h(x)=f(x)g(x),设法证明,即可证明.(Ⅲ)由题即,易证,当时取到等号,由得,由此可求的值.【题目详解】(Ⅰ)因为由,得所以f(x)的单调递减区间是.(Ⅱ)记h(x)=f(x)g(x)=,,所以在R上为减函数因为所以存在唯一,使即,,当时,;当时,.所以所以.(Ⅲ)因为,所以,易证,当时取到等号,由得,,所以即.【题目点拨】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB12-T 995-2023 绿色公共机构评价技术规范
- 广东省湛江市(2024年-2025年小学五年级语文)统编版能力评测(上学期)试卷及答案
- 湖北省襄樊市(2024年-2025年小学五年级语文)人教版专题练习((上下)学期)试卷及答案
- 机床夹具设计电子教案第十五讲
- 二年级语文第四册电子教案
- 上海市市辖区(2024年-2025年小学五年级语文)人教版综合练习((上下)学期)试卷及答案
- 一年级数学计算题专项练习1000题汇编
- 四年级语文下册教案
- DB11T 1108-2014 地类认定规范
- 坐标测量装置产业深度调研及未来发展现状趋势
- 高等职业院校有关说课的解析-王津 陕西工业职业技术学院(2021)讲解
- 中国环卫机械行业市场发展态势及发展趋势与投资战略研究报告
- 当代社会政策分析 课件 第九章 妇女社会政策
- 2024新交管12123学法减分考试题库含答案
- 中国电信新一代智算数据中心基础设施技术方案白皮书
- 2024年职业技能“大数据考试”专业技术人员继续教育考试题库与答案
- 国家高新技术企业评定打分表
- 成语故事钻木取火
- MOOC 自然地理学-西北大学 中国大学慕课答案
- 计算机组成原理与汇编语言课后习题及作业答案
- 中华民族共同体
评论
0/150
提交评论