版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市北辰区2024届数学高二第二学期期末质量跟踪监视模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.己知弧长的弧所对的圆心角为弧度,则这条弧所在的圆的半径为()A. B. C. D.2.如图,在三棱锥中,点D是棱的中点,若,,,则等于()A. B. C. D.3.某物体的位移(米)与时间(秒)的关系为,则该物体在时的瞬时速度是()A.米/秒 B.米/秒 C.米/秒 D.米/秒4.设a=e1eA.a>c>b B.c>a>b C.c>b>a D.a>b>c5.在某次考试中,甲、乙通过的概率分别为0.7,0.4,若两人考试相互独立,则甲未通过而乙通过的概率为A.0.28 B.0.12 C.0.42 D.0.166.过点作曲线的切线,则切线方程为()A. B.C. D.7.体育课上,小红、小方、小强、小军四位同学都在进行足球、篮球、羽毛球、乒乓球等四项体自运动中的某一种,四人的运动项目各不相同,下面是关于他们各自的运动项目的一些判断:①小红没有踢足球,也没有打篮球;②小方没有打篮球,也没有打羽毛球;③如果小红没有打羽毛球,那么小军也没有踢足球;④小强没有踢足球,也没有打篮球.已知这些判断都是正确的,依据以上判断,请问小方同学的运动情况是()A.踢足球B.打篮球C.打羽毛球D.打乒乓球8.已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为()A. B. C. D.9.在的展开式中,系数的绝对值最大的项为()A. B. C. D.10.盒中装有10个乒乓球,其中6个新球,4个旧球,不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为()A. B. C. D.11.在长为的线段上任取一点现作一矩形,领边长分别等于线段的长,则该矩形面积小于的概率为()A. B. C. D.12.若x∈(0,1),a=lnx,b=,c=elnx,则a,b,c的大小关系为()A.b>c>a B.c>b>a C.a>b>c D.b>a>c二、填空题:本题共4小题,每小题5分,共20分。13.设双曲线的左、右焦点分别为,右顶点为A,若A为线段的一个三等分点,则该双曲线离心率的值为______.14.函数的定义域是_____.15.设随机变量,,若,则___________.16.已知函数的图象的对称中心为,函数的图象的对称中心为,函数的图象的对称中心为.由此推测,函数的图象的对称中心为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)当a=1时,求函数f(x)的单调区间;(2)若恒成立,求b-a的最小值.18.(12分)甲、乙两位同学进入新华书店购买数学课外阅读书籍,经过筛选后,他们都对三种书籍有购买意向,已知甲同学购买书籍的概率分别为,乙同学购买书籍的概率分别为,假设甲、乙是否购买三种书籍相互独立.(1)求甲同学购买3种书籍的概率;(2)设甲、乙同学购买2种书籍的人数为,求的概率分布列和数学期望.19.(12分)2119年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了211名学生每周阅读时间(单位:小时)并绘制如图所示的频率分布直方图.(1)求这211名学生每周阅读时间的样本平均数和样本方差(同一组中的数据用该组区间的中间值代表);(2)由直方图可以认为,目前该校学生每周的阅读时间服从正态分布,其中近似为样本平均数,近似为样本方差.(i)一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若令,则,且.利用直方图得到的正态分布,求.(ii)从该高校的学生中随机抽取21名,记表示这21名学生中每周阅读时间超过11小时的人数,求(结果精确到1.1111)以及的数学期望.参考数据:.若,则.20.(12分)已知函数.(1)若,证明:当时,;当时,;(2)若是的极大值点,求.21.(12分)设(I)若的极小值为1,求实数的值;(II)当时,记,是否存在整数,使得关于的不等式有解?若存在求出的最小值,若不存在,说明理由.22.(10分)“DD共享单车”是为城市人群提供便捷经济、绿色低碳的环保出行方式,根据目前在三明市的投放量与使用的情况,有人作了抽样调查,抽取年龄在二十至五十岁的不同性别的骑行者,统计数据如下表所示:男性女性合计20~35岁4010036~50岁4090合计10090190(1)求统计数据表中的值;(2)假设用抽到的100名20~35岁年龄的骑行者作为样本估计全市的该年龄段男女使用“DD共享单车”情况,现从全市的该年龄段骑行者中随机抽取3人,求恰有一名女性的概率;(3)根据以上列联表,判断使用“DD共享单车”的人群中,能否有的把握认为“性别”与“年龄”有关,并说明理由.参考数表:参考公式:,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
利用弧长公式列出方程直接求解,即可得到答案.【题目详解】由题意,弧长的弧所对的圆心角为2弧度,则,解得,故选D.【题目点拨】本题主要考查了圆的半径的求法,考查弧长公式等基础知识,考查了推理能力与计算能力,是基础题.2、A【解题分析】
利用向量的三角形法则,表示所求向量,化简求解即可.【题目详解】解:由题意在三棱锥中,点是棱的中点,若,,,可知:,,,.故选:.【题目点拨】本题考查向量的三角形法则,空间向量与平面向量的转化,属于基础题.3、B【解题分析】
根据导数的物理意义,求导后代入即可.【题目详解】由得:当时,即该物体在时的瞬时速度为:米/秒本题正确结果:【题目点拨】本题考查导数的物理意义,属于基础题.4、B【解题分析】
依据y=lnx的单调性即可得出【题目详解】∵b=ln而a=e1e>0,c=又lna=lne1所以lnc>lna,即有c>a,因此c>a>b【题目点拨】本题主要考查利用函数的单调性比较大小。5、B【解题分析】
两人考试相互独立,所以是相互独立事件同时发生的概率,按照公式求即可.【题目详解】甲未通过的概率为0.3,则甲未通过而乙通过的概率为.选B.【题目点拨】本题考查相互独立事件同时发生的概率,属于基础题.6、C【解题分析】
设出切点坐标求出原函数的导函数,得到函数在时的导数值,即切线的斜率,然后由直线方程的点斜式得切线方程,代入已知点的坐标后求出切点的坐标,则切线方程可求.【题目详解】由,得,
设切点为
则,
∴切线方程为,
∵切线过点,
∴−ex0=ex0(1−x0),
解得:.
∴切线方程为,整理得:.故选C..【题目点拨】本题考查了利用导数研究过曲线上某点的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.7、A【解题分析】分析:由题意结合所给的逻辑关系进行推理论证即可.详解:由题意可知:小红、小方、小强都没有打篮球,故小军打篮球;则小军没有踢足球,且已知小红、小强都没有踢足球,故小方踢足球.本题选择A选项.点睛:本题主要考查学生的推理能力,意在考查学生的转化能力和计算求解能力.8、A【解题分析】
根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【题目详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【题目点拨】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.9、D【解题分析】
根据最大的系数绝对值大于等于其前一个系数绝对值;同时大于等于其后一个系数绝对值;列出不等式求出系数绝对值最大的项;【题目详解】二项式展开式为:设系数绝对值最大的项是第项,可得可得,解得在的展开式中,系数的绝对值最大的项为:故选:D.【题目点拨】本题考查二项展开式中绝对值系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.10、C【解题分析】试题分析:在第一次取出新球的条件下,盒子中还有9个球,这9个球中有5个新球和4个旧球,故第二次也取到新球的概率为考点:古典概型概率11、C【解题分析】试题分析:设AC=x,则0<x<12,若矩形面积为小于32,则x>8或x<4,从而利用几何概型概率计算公式,所求概率为长度之比解:设AC=x,则BC=12-x,0<x<12若矩形面积S=x(12-x)<32,则x>8或x<4,即将线段AB三等分,当C位于首段和尾段时,矩形面积小于32,故该矩形面积小于32cm2的概率为P==故选C考点:几何概型点评:本题主要考查了几何概型概率的意义及其计算方法,将此概率转化为长度之比是解决本题的关键,属基础题12、A【解题分析】
利用指数函数、对数函数的单调性直接求解.【题目详解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小关系为b>c>a.故选:A.【题目点拨】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、3.【解题分析】分析:由题根据A为线段的一个三等分点,建立等式关系即可.详解:由题可知:故双曲线离心率的值为3.点睛:考查双曲线的离心率求法,根据题意建立正确的等式关系为解题关键,属于基础题.14、【解题分析】
对数函数的定义域满足真数要大于零【题目详解】由,解得,故定义域为.【题目点拨】本题考查了对数的定义域,只需满足真数大于零即可,然后解不等式,较为简单15、【解题分析】
由求出,然后即可算出【题目详解】因为,所以解得,所以所以故答案为:【题目点拨】本题考查的是二项分布的相关知识,较简单.16、【解题分析】
由已知可归纳推测出的对称中心为,再由函数平移可得的对称中心.【题目详解】由题意,题中所涉及的函数的对称中心的横坐标依次为,即由此推测的对称中心为.又所以其对称中心为.故答案为:【题目点拨】本题考查归纳与推理,涉及到函数的对称中心的问题,是一道中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)f(x)的单调增区间为(e,+∞),减区间为(1,e);(2).【解题分析】分析:(Ⅰ)求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(Ⅱ)由题意得,可得函数单调增区间为,减区间为,即恒成立,,即,构造函数,利用导数研究函数的单调性可得,即可得的最小值.详解:(Ⅰ)当a=1时,f(x)=(2x2+x)lnx﹣3x2﹣2x+b(x>1).f′(x)=(4x+1)(lnx﹣1),令f′(x)=1,得x=e.x∈(1,e)时,f′(x)<1,∈(e,+∞)时,f′(x)>1.函数f(x)的单调增区间为(e,+∞),减区间为(1,e);(Ⅱ)由题意得f′(x)=(4x+1)(lnx﹣a),(x>1).令f′(x)=1,得x=ea.x∈(1,ea)时,f′(x)<1,∈(ea,+∞)时,f′(x)>1.函数f(x)的单调增区间为(ea,+∞),减区间为(1,ea)∴f(x)min=f(ea)=﹣e2a﹣ea+b,∵f(x)≥1恒成立,∴f(ea)=﹣e2a﹣ea+b≥1,则b≥e2a+ea.∴b﹣a≥e2a+ea﹣a令ea=t,(t>1),∴e2a+ea﹣a=t2+t﹣lnt,设g(t)=t2+t﹣lnt,(t>1),g′(t)=.当t∈(1,)时,g′(t)<1,当时,g′(t)>1.∴g(t)在(1,)上递减,在(,+∞)递增.∴g(t)min=g()=.f(x)≥1恒成立,b﹣a的最小值为.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.18、(1);(2)分布列见解析,.【解题分析】
(1)这是相互独立事件,所以甲购买书籍的概率直接相乘即可.(2)基本事件为甲购买两本书和乙购买两本书的概率,所以先求出基本事件的概率,然后再求分布列.【题目详解】(1)记“甲同学购买3种书籍”为事件A,则.答:甲同学购买3种书籍的概率为.(2)设甲、乙同学购买2种书籍的概率分别为,.则,,所以,所以.,,.所以X的概率分布为X012P.答:所求数学期望为.【题目点拨】本题考查相互独立事件的概率,考查二项分布独立重复事件的概率的求法,解题的关键是找出基本事件的概率,属于中档题.19、(1)9,1.78(2)(i)(ii)见解析【解题分析】
(1)直接由平均数公式及方差公式求解;(2)(i)由题知,,则,求出,结合已知公式求解.(ⅱ)由(i)知,可得,由求解,再由正态分布的期望公式求的数学期望.【题目详解】解:(1),;(2)(i)由题知,,∴,.∴;(ⅱ)由(i)知,可得,.∴的数学期望.【题目点拨】本题考查正态分布曲线的特点及曲线所表示的意义,考查离散型随机变量得期望,是中档题.20、(1)见解析(2)【解题分析】分析:(1)求导,利用函数单调性证明即可.(2)分类讨论和,构造函数,讨论的性质即可得到a的范围.详解:(1)当时,,.设函数,则.当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.所以在单调递增.又,故当时,;当时,.(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.(ii)若,设函数.由于当时,,故与符号相同.又,故是的极大值点当且仅当是的极大值点..如果,则当,且时,,故不是的极大值点.如果,则存在根,故当,且时,,所以不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度企业职工工伤保险担保合同样本3篇
- 洗瓶机械课程设计
- 职业培训课程设计
- 电子课程设计旋转彩灯
- 直流数字电流表课程设计
- 线路勘测课程设计说
- 怎么把课程设计写进简历
- 2025版特殊物品租赁合同规范文本2篇
- 二零二五年度2025安保员聘用及安全文化建设与宣传合同
- 幼儿园拆装玩具课程设计
- 江苏省南通市崇川区2023-2024学年八上期末数学试题(原卷版)
- 河南省郑州市2023-2024学年高二上学期期末考试历史试题(解析版)
- 辽宁省沈阳市沈河区2024-2025学年九年级上学期期末道德与法治试题(含答案)
- 江西省赣州市南康区2023-2024学年八年级上学期期末考试数学试卷(含答案)
- 《制造业成本核算》课件
- 2024项目经理讲安全课
- 中国共产主义青年团团章
- 采购原材料年终总结
- 2024-2030年中国隧道建设行业前景展望及投资规划分析报告
- 2024-2025学年人教版初中物理九年级全一册期中复习(易错60题)(解析版)
- 环保验收课件教学课件
评论
0/150
提交评论