




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市部分学校高二数学第二学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量服从二项分布,且,则()A. B. C. D.2.设函数(e为自然底数),则使成立的一个充分不必要条件是()A. B. C. D.3.已知x,y的取值如下表示:若y与x线性相关,且,则a=()x0134y2.24.34.86.7A.2.2 B.2.6 C.2.8 D.2.94.若复数是纯虚数,则的共轭复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.已知函数,若方程有五个不同的实数根,则的取值范围是()A.(0,+∞) B.(0,1) C.(-∞,0) D.(0,)6.若复数满足,则在复平面内,对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在一次试验中,测得的四组值分别是,,,,则与之间的线性回归方程为()A. B. C. D.8.若集合,,则()A. B.C. D.9.已知定义在R上的偶函数,在时,,若,则a的取值范围是()A.B.C.D.10.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是()平方米A. B.C. D.11.设集合,,,则中的元素个数为()A. B. C. D.12.一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●……若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前55个圈中的●个数是()A.10 B.9 C.8 D.11二、填空题:本题共4小题,每小题5分,共20分。13.若函数,且在上有最大值,则最大值为_____.14.若指数函数的图象过点,则__________.15.西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为__________.16.在二项式展开式中,第五项为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.点的直角坐标为,直线与曲线交于两点.(Ⅰ)写出点的极坐标和曲线的普通方程;(Ⅱ)当时,求点到两点的距离之积.18.(12分)已知函数.(1)若在上的最大值是最小值的2倍,解不等式;(2)若存在实数使得成立,求实数的取值范围.19.(12分)已知,是双曲线:(、为常数,)上的两个不同点,是坐标原点,且,(1)若是等腰三角形,且它的重心是双曲线的右顶点,求双曲线的渐近线方程;(2)求面积的最小值.20.(12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:,,,,,,后得到如图的频率分布直方图.(1)求图中实数的值;(2)若该校高一年级共有学生1000人,试估计该校高一年级期中考试数学成绩不低于60分的人数.(3)若从样本中数学成绩在,与,两个分数段内的学生中随机选取2名学生,试用列举法求这2名学生的数学成绩之差的绝对值大于10的槪率.21.(12分)已知函数,(1)若,证明:函数是上的减函数;(2)若曲线在点处的切线不直线平行,求a的值;(3)若,证明:(其中…是自然对数的底数).22.(10分)2019年春节档有多部优秀电影上映,其中《流浪地球》是比较火的一部.某影评网站统计了100名观众对《流浪地球》的评分情况,得到如下表格:评价等级★★★★★★★★★★★★★★★分数0~2021〜4041〜6061~8081〜100人数5212675(1)根据以上评分情况,试估计观众对《流浪地球》的评价在四星以上(包括四星)的频率;(2)以表中各评价等级对应的频率作为各评价等级对应的概率,假设每个观众的评分结果相互独立.(i)若从全国所有观众中随机选取3名,求恰有2名评价为五星1名评价为一星的概率;(ii)若从全国所有观众中随机选取16名,记评价为五星的人数为X,求X的方差.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
由二项分布与次独立重复实验的模型得:,,则,得解.【题目详解】因为服从二项分布,,,所以,,即,,则,故选:A.【题目点拨】本题考查二项分布与次独立重复实验的模型,属于基础题.2、A【解题分析】
由可得:,结合充分、必要条件的概念得解.【题目详解】解得:又“”可以推出“”但“”不能推出“”所以“”是“”充分不必要条件.故选:A.【题目点拨】本题主要考查了等价转化思想及充分、必要条件的概念,属于基础题。3、B【解题分析】
求出,代入回归方程可求得.【题目详解】由题意,,所以,.故选:B.【题目点拨】本题考查回归直线方程,掌握回归直线方程的性质是解题关键.回归直线一定过中心点.4、C【解题分析】
由纯虚数的定义和三角恒等式可求得,根据二倍角公式求得;根据复数的几何意义可求得结果.【题目详解】为纯虚数,,即,,,,对应点的坐标为,位于第二象限.则的共轭复数在复平面内对应的点位于第三象限故选:.【题目点拨】本题考查复数对应点的坐标的问题的求解,涉及到同角三角函数值的求解、二倍角公式的应用、复数的几何意义等知识.5、D【解题分析】
由方程的解与函数图象的交点关系得:方程有五个不同的实数根等价于的图象与的图象有5个交点,作图可知,只需与曲线在第一象限有两个交点即可。利用导数求过某点的切线方程得:过原点的直线与相切的直线方程为,即所求的取值范围为,得解.【题目详解】设,则的图象与的图象关于原点对称,方程有五个不同的实数根等价于函数的图象与的图象有5个交点,由图可知,只需与曲线在第一象限有两个交点即可,设过原点的直线与切于点,,由,则过原点的直线与相切,,又此直线过点,所以,所以,即(e),即过原点的直线与相切的直线方程为,即所求的取值范围为,故选.【题目点拨】本题主要考查了方程的解与函数图象的交点个数问题的关系应用及利用导数求切线方程。6、A【解题分析】
由题先解出,再利用来判断位置【题目详解】,在复平面对应的点为,即在第一象限,故选A【题目点拨】本题考查复数的除法,复数的概念及几何意义,是基础题.7、D【解题分析】
根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是线性回归方程.【题目详解】∴这组数据的样本中心点是
把样本中心点代入四个选项中,只有成立,
故选D.【题目点拨】本题考查求线性回归方程,一般情况下是一个运算量比较大的问题,解题时注意平均数的运算不要出错,注意系数的求法,运算时要细心,但是对于一个选择题,还有它特殊的加法.8、A【解题分析】分析:求出及,即可得到.详解:则.故选C.点睛:本题考查集合的综合运算,属基础题.9、B【解题分析】试题分析:当时,,,∴函数在上为增函数,∵函数是定义在R上的偶函数,∴,∴,∴,即.考点:函数的单调性、奇偶性、解不等式.10、D【解题分析】分析:由已知可得水对应的几何体是一个以截面中阴影部分为底,以9为高的柱体,求出底面面积,代入柱体体积公式,可得答案.详解:由已知中罐子半径是4米,水深2米,故截面中阴影部分的面积S=平方米,又由圆柱形的罐子的高h=9米,故水的体积V=Sh=48立方米,故选D.点睛:本题考查的知识点是柱体的体积公式,扇形面积公式,弓形面积公式,难度中档.11、C【解题分析】分析:由题意列表计算所有可能的值,然后结合集合元素的互异性确定集合M,最后确定其元素的个数即可.详解:结合题意列表计算M中所有可能的值如下:2341234246836912观察可得:,据此可知中的元素个数为.本题选择C选项.点睛:本题主要考查集合的表示方法,集合元素的互异性等知识,意在考查学生的转化能力和计算求解能力.12、B【解题分析】将圆分组:第一组:○●,有个圆;第二组:○○●,有个圆;第三组:○○○●,有个,…,每组圆的总个数构成了一个等差数列,前组圆的总个数为,令,解得,即包含整组,故含有●的个数是个,故选B.【方法点睛】本题考查等差数列的求和公式及归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】
先对函数求导,求出,再由导数的方法研究函数单调性,进而可求出结果.【题目详解】因为,所以,因此,解得,所以,由得或;由得,所以函数在上单调递增,在上单调递减,在上单调递增;所以当时,取极大值,由得或;又在上有最大值,所以只需.故答案为3【题目点拨】本题主要考查导数的应用,由函数在给定区间有最大值求参数,只需利用导数的方法研究函数单调性,即可求解,属于常考题型.14、【解题分析】
设指数函数为,代入点的坐标求出的值,再求的值.【题目详解】设指数函数为,所以.所以.故答案为【题目点拨】本题主要考查指数函数的解析式的求法和指数函数求值,意在考查学生对这些知识的理解掌握水平和分析推理能力.15、【解题分析】
由组合数结合古典概型求解即可【题目详解】从11个数中随机抽取3个数有种不同的方法,其中能构成勾股数的有共三种,所以,所求概率为.故答案为【题目点拨】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.16、60【解题分析】
根据二项式的通项公式求解.【题目详解】二项式的展开式的通项公式为:,令,则,故第五项为60.【题目点拨】本题考查二项式定理的通项公式,注意是第项.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解题分析】分析:⑴由极坐标方程求出点的极坐标,运用求得曲线的普通方程⑵将代入,求出直线的参数方程,然后计算出结果详解:(Ⅰ)由得,又得,∴点的极坐标为.由得,所以有,由得,所以曲线的普通方程为:.(Ⅱ)因为,点在上,∴直线的参数方程为:,将其代入并整理得,设所对应的参数分别为,且有,所以.点睛:本题考查了极坐标和普通方程之间的转化,运用代入化简即可,在求距离时可以运用参数方程来解答,计算量减少18、(Ⅰ);(Ⅱ).【解题分析】分析:(1)根据在上的最大值是最小值的2倍求出a的值,再解不等式.(2)先分离参数得,再求右边式子的最小值,得到a的取值范围.详解:(1)∵,∴,,∴,解得,不等式,即,解得或,故不等式的解集为.(2)由,得,令,问题转化为,又故,则,所以实数的取值范围为.点睛:(1)本题主要考查不等式的解法和求绝对值不等式的最值,意在考查学生对这些基础知识的掌握能力.(2)本题易错,得到,问题转化为,不是转化为,因为它是存在性问题.19、(1);(2)【解题分析】
(1)根据三角形重心的性质与是等腰三角形可求得的坐标,再代入双曲线方程求解即可.
(2)将双曲线:用极坐标表达,可直接设,再利用,代入求得关于的表达式再求最值即可.【题目详解】(1)当是等腰三角形,且它的重心是双曲线的右顶点时,可知在双曲线的右支上,且.设,则由重心性质有,故在双曲线上,故,可得,即.故双曲线的渐近线方程为.(2)由双曲线:,转换为极坐标则有,化简得,设则有,故,故,当且仅当,即,即时等号成立.故面积的最小值为.【题目点拨】本题主要考查了圆锥曲线中面积的最值问题,因为题中有,故在求面积的最小值时,可以考虑用极坐标的方法做进行简化计算,属于难题.20、(1)a=0.1.(2)850(人).(3).【解题分析】试题分析:(1)由频率分布直方图的性质能求出的值;(2)先求出数学成绩不低于分的概率,由此能求出数学成绩不低于分的人数;(3)数学成绩在的学生为分,数学成绩在的学生人数为人,由此利用列举法能求出这名学生的数学成绩之差的绝对值大于的概率.试题解析:(1)由频率分布直方图,得:0.05+0.1+0.2+10a+0.25+0.1=1,解得a=0.1.(2)数学成绩不低于60分的概率为:0.2+0.3+0.25+0.1=0.85,∴数学成绩不低于60分的人数为:1000×0.85=850(人).(3)数学成绩在[40,50)的学生为40×0.05=2(人),数学成绩在[90,100]的学生人数为40×0.1=4(人),设数学成绩在[40,50)的学生为A,B,数学成绩在[90,100]的学生为a,b,c,d,从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,基本事件有:{AB},{Aa},{Ab},{Ac},{Ad},{Ba},{Bb},{Bc},{Bd},{ab},{ac},{ad},{bc},{bd},{c,d},其中两名学生的数学成绩之差的绝对值大于10的情况有:{Aa},{Ab},{Ac},{Ad},{Ba},{Bb},{Bc},{Bd},共8种,∴这2名学生的数学成绩之差的绝对值大于10的槪率为.考点:频率分布直方图;古典概型及其概率的求解.21、(I)详见解析;(II);(III)详见解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 封面制作比赛课件
- 地震反演技术课件
- 九年级下学期思想品德课教学工作总结
- 人事部个人上半年工作总结
- 2025公寓复杂房屋装修合同
- 2025年上海市新劳动合同范本(合同版本)
- 瑜伽老师合作合同范本
- 疫情防控安全教育课件
- 周年庆活动方案(8篇)
- 公司多人投资合同标准文本
- 数学-广东省广州市2025届高三一模试题和解析
- 地理空间分析与建模课件
- 新人教版八年级下册初中物理全册教学课件
- 幼儿绘本故事:如果不吃青菜
- 小班音乐歌唱《小鸡抓虫》原版动态PPT课件
- 二次函数图像平移-对称与旋转.pptx
- 精装土建移交管理办法
- 《货币金融学》
- 施工现场总平面布置图(共23页)
- 农村土地承包经营权流转申请登记表
- 小学生课堂常规(课堂PPT)
评论
0/150
提交评论