版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省非凡吉名校创联盟2024届高二数学第二学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数f(x)与它的导函数f'(x)的大致图象如图所示,设g(x)=f(x)exA.15 B.25 C.32.已知正三棱锥的外接球的半径为,且满足则正三棱锥的体积为()A. B. C. D.3.已知为虚数单位,复数满足,是复数的共轭复数,则下列关于复数的说法正确的是()A. B.C. D.复数在复平面内表示的点在第四象限4.下列选项错误的是()A.“”是“”的充分不必要条件.B.命题“若,则”的逆否命题是“若,则”C.若命题“”,则“”.D.若“”为真命题,则均为真命题.5.在三棱锥中,,,面,,,分别为,,的中点,,则异面直线与所成角的余弦值为()A. B. C. D.6.已知集合,,则()A. B. C. D.7.已知正项等差数列满足:,等比数列满足:,则()A.-1或2 B.0或2 C.2 D.18.对于命题“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体()A.各正三角形内的点B.各正三角形的中心C.各正三角形某高线上的点D.各正三角形各边的中点9.对变量x,y有观测数据(xi,yiA.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关10.在曲线的图象上取一点及附近一点,则为()A. B.C. D.11.设,,,……,,,则()A. B. C. D.12.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A. B. C.48 D.二、填空题:本题共4小题,每小题5分,共20分。13.在上随机地取一个数,则事件“直线与圆相交”发生的概率为__________.14.若函数,若,则=______.15.设,.已知矩阵,其中,,那么B=________.16.在1,2,3,…,80这八十个数中,随机抽取一个数作为数,将分别除以3,5,7后所得余数按顺序拼凑成一个具有三位数字的数,例如,时,时,.若,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设实部为正数的复数,满足,且复数在复平面内对应的点在第一、三象限的角平分线上.(1)求复数;(2)若复数为纯虚数,求实数的值.18.(12分)设.(Ⅰ)求的值;(Ⅱ)求的值.19.(12分)已知函数是奇函数().(1)求实数的值;(2)试判断函数在上的单调性,并证明你的结论;(3)若对任意的,不等式恒成立,求实数的取值范围.20.(12分)如图,三棱柱的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是是的中点.(1)求证:平面;(2)求二面角的大小;21.(12分)已知.(1)求的值;(2)当时,求的最大值.22.(10分)2016年10月16日,在印度果阿出席金砖国家领导人第八次会议时,发表了题为《坚定信心,共谋发展》的重要讲话,引起世界各国的关注,为了了解关注程度,某机构选取“70后”和“80后”两个年龄段作为调查对象,进行了问卷调查,共调查了120名“80后”,80名“70后”,其中调查的“80后”有40名不关注,其余的全部关注;调查的“70”后有10人不关注,其余的全部关注.(1)根据以上数据完成下列2×2列联表:关注不关注合计“80后”“70后”合计(2)根据2×2列联表,能否在犯错误的概率不超过0.001的前提下,认为“关注与年龄段有关”?请说明理由。参考公式:K2=(n=a+b+c+d)附表:P(K2≥k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
结合图象可得到f'(x)-f(x)<0成立的x的取值范围,从而可得到g(x)【题目详解】由图象可知,y轴左侧上方图象为f'(x)的图象,下方图象为对g(x)求导,可得g'(x)=f'(x)-f(x)ex,结合图象可知x∈(0,1)和x∈(4,5)时,f'(x)-f(x)<0,即g(x)在0,1和【题目点拨】本题考查了函数的单调性问题,考查了数形结合的数学思想,考查了导数的应用,属于中档题.2、A【解题分析】
根据判断出为等边三角形的中心,由此求得正三棱锥的底面积和高,进而求得正三棱锥的体积.【题目详解】由于三棱锥是正三棱锥,顶点在底面的射影是底面中心.由可知,为等边三角形的中心,由于正三棱锥的外接球的半径为,故由正弦定理得,且正三棱锥的高为球的半径,故正三棱锥的体积为.所以本小题选A.【题目点拨】本小题主要考查正三棱锥的几何性质,考查向量加法运算,考查几何体外接球有关问题的求解,属于中档题.3、B【解题分析】
由复数的乘法除法运算求出,进而得出答案【题目详解】由题可得,在复平面内表示的点为,位于第二象限,,故A,C,D错误;,,故B正确;【题目点拨】本题考查复数的基本运算与几何意义,属于简单题.4、D【解题分析】
根据充分条件和必要条件的定义,逆否命题的定义、含有量词的命题的否定以及复合命题的真假关系依次对选项进行判断即可得到答案。【题目详解】对于A,由可得或,即“”是“”的充分不必要条件,故A正确;对于B,根据逆否命题的定义可知命题“若,则”的逆否命题是“若,则”,故B正确;对于C,由全称命题的否定是存在命题,可知若命题“”,则“”,故C正确;对于D,根据复合命题的真值表可知若“”为真命题,则至少一个为真命题,故D错误。故答案选D【题目点拨】本题考查命题真假的判定,涉及到逆否命题的定义、充分条件与必要条件的判断、含有量词的命题的否定以及复合命题的真假关系,属于基础题。5、B【解题分析】
由题意可知,以B为原点,BC,BA,BP分别为x,y,z轴建立空间直角坐标系,利用空间向量坐标法求角即可.【题目详解】∵∴,以B为原点,BC,BA,BP分别为x,y,z轴建立空间直角坐标系,∴,设,则,∵,∴,解得∴∴,∴异面直线与所成角的余弦值为故选B【题目点拨】本题考查了异面直线所成角的余弦值求法问题,也考查了推理论证能力和运算求解能力,是中档题.6、D【解题分析】分析:先化简集合P,Q,再求.详解:由题得,,所以.故答案为:D.点睛:本题主要考查集合的化简与交集运算,意在考查学生对这些知识的掌握水平,属于基础题.7、C【解题分析】分析:根据数列的递推关系,结合等差和等比数列的定义和性质求出数列的通项公式即可得到结论.详解:由,得,
∵是正项等差数列,
∴
,∵是等比数列,则,即
故选:D.点睛:本题主要考查对数的基本运算,根据等差数列和等比数列的性质,求出数列的通项公式是解决本题的关键.8、B【解题分析】四面体的面可以与三角形的边类比,因此三边的中点也就类比成各三角形的中心,故选择B.9、C【解题分析】试题分析:由散点图1可知,点从左上方到右下方分布,故变量x与y负相关;由散点图2可知,点从左下方到右上方分布,故变量u与v正相关,故选C考点:本题考查了散点图的运用点评:熟练运用随机变量的正负相关的概念是解决此类问题的关键,属基础题10、C【解题分析】
求得的值,再除以,由此求得表达式的值.【题目详解】因为,所以.故选C.【题目点拨】本小题主要考查导数的定义,考查平均变化率的计算,属于基础题.11、B【解题分析】
根据题意,依次求出f1(x)、f2(x)、f3(x)、f4(x)的值,分析可得fn+4(x)=fn(x),据此可得f2019(x)=f3(x),即可得答案.【题目详解】根据题意,=sinx,f1(x)==cosx,f2(x)==﹣sinx,f3(x)==﹣cosx,f4(x)==sinx,则有f1(x)=f4(x),f2(x)=f5(x),……则有fn+4(x)=fn(x),则f2019(x)=f3(x)=﹣cosx;故选:B.【题目点拨】本题考查导数的计算,涉及归纳推理的应用,关键是掌握导数的计算公式.12、B【解题分析】
由三视图可得几何体是如图所示四棱锥,根据三视图数据计算表面积即可.【题目详解】由三视图可得几何体是如图所示四棱锥,则该几何体的表面积为:.故选:B【题目点拨】本题主要考查了三视图,空间几何体的表面积计算,考查了学生的直观想象能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:直线y=kx与圆相交,需要满足圆心到直线的距离小于半径,即,解得,而,所以所求概率P=.【考点】直线与圆位置关系;几何概型【名师点睛】本题是高考常考知识内容,考查几何概型概率的计算.本题综合性较强,具有“无图考图”的显著特点,涉及点到直线距离的计算.本题能较好地考查考生分析问题、解决问题的能力及基本计算能力等.14、【解题分析】
本题首先可以对分段函数进行研究,确定每一个分段函数所对应的函数解析式以及取值范围,然后先计算出的值,再对与之间的关系进行分类讨论,最后得出结果.【题目详解】因为函数所以,若即则解得(舍去),若,即,则解得,综上所述,答案为【题目点拨】本题考查的知识点是分段函数的应用以及函数求值,难度不大,属于基础题.考查分段函数的时候一定要能够对每一个取值范围所对应的函数解析式有一个确定的认识.15、【解题分析】
根据条件列方程组,解得结果.【题目详解】由定义得,所以故答案为:【题目点拨】本题考查矩阵运算,考查基本分析求解能力,属基础题.16、49【解题分析】
由的个位数字为0,所以一定是7的倍数,它可能的取值为7,14,21,28,35,42,49,56,63,70,77,再分别求出它们所对应的数,可知。【题目详解】由的个位数字为0,所以一定是7的倍数,它可能的取值为7,14,21,28,35,42,49,56,63,70,77,它们所对应的数分别为120,240,010,130,200,020,140,210,030,100,220,故。【题目点拨】本题主要考查合情推理,列举找规律。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)根据待定系数法求解,设,由题意得到关于的方程组求解即可.(2)根据纯虚数的定义求解.【题目详解】(1)设,由,得又复数在复平面内对应的点在第一、三象限的角平分线上,则,即.由,解得或(舍去),∴.(2)由题意得,∵复数为纯虚数,∴解得∴实数的值为.【题目点拨】处理有关复数的基本概念问题,关键是找准复数的实部和虚部,从定义出发,把复数问题转化成实数问题来处理,求解过程中常常涉及到方程思想的运用.18、(Ⅰ)16;(Ⅱ)1049.【解题分析】
(Ⅰ)赋值,令即可求出;(Ⅱ)分别令,两式相加,可以求得,单独求出,继而求出.【题目详解】(I)令,解得.(II)令,即,令,即,两式相加,,而,故.【题目点拨】本题主要考二项式定理和赋值法的应用.19、(1)(2)单调递增,见解析(3)【解题分析】
(1)根据函数是定义在上的奇函数,由求得的值.(2)由(1)求得的解析式,利用单调性的定义,任取,计算,由此证得在上递增.(3)根据的单调性和奇偶性化简不等式,得到对任意恒成立,利用一元二次不等式恒成立则其判别式为负数列不等式,解不等式求得的取值范围.【题目详解】(1)∵是奇函数在原点有定义:∴,∴;经验证满足题意(2)在上单调递增,证明如下:设,则:;∵,∴,;∴;∴是上的增函数;(3)由(1)、(2)知,是上的增函数,且是奇函数;∵,∴;∴;即对任意恒成立;只需;解之得;∴实数的取值范围为.【题目点拨】本小题主要考查根据函数的奇偶性求参数,考查利用函数单调性的定义证明函数的单调性,考查利用函数的奇偶性和单调性解不等式,考查一元二次不等式恒成立问题的求解,属于中档题.20、(1)证明见解析;(2).【解题分析】分析:⑴设与相交于点,连接,根据题意可得,利用线面平行的判定定理得到平面;⑵建立空间直角坐标系,求出法向量,然后运用公式计算二面角的大小详解:(1)设与相交于点P,连接PD,则P为中点,D为AC中点,PD//,又PD平面D,//平面D.(2)如图建立空间直角坐标系,则D(0,0,0),A(1,0,0),(1,0,),B(0,,0),(0,,)=(-1,,-),=(-1,0,-)设平面的法向量为n=(x,y,z)则nn则有,得n=(,0,1)由题意,知=(0,0,)是平面ABD的一个法向量。设n与所成角为,则,二面角的大小是.点睛:本题主要考查了线面平行的判定定理,要求二面角平面角的大小,可以采用建立空间直角坐标系的方法,给出点坐标,求出各面上的法向量,利用公式即可求出角的大小。21、(1)(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年生态环境治理保护合同
- 2024年版项目监工聘用合同
- 特岗英语课程设计
- 现代诗课程设计分享
- 电子表课程设计c语言
- 测绘工程课程设计选题
- 社交软件销售工作总结
- 航空航天顾问工作总结
- 保健品行业营销策略总结
- 餐饮团购前台工作总结
- 水泥行业数字化转型服务方案
- 深圳市南山区2024-2025学年第一学期期末教学质量检测九年级物理 24-25上九年级物理
- 应急设施设备和物资储备管理制度(4篇)
- 团委书记个人工作总结
- 高危多发性骨髓瘤诊断与治疗中国专家共识(2024年版)解读
- 2024版房屋市政工程生产安全重大事故隐患判定标准内容解读
- 江苏省镇江市实验学校2023-2024学年九年级上学期期末考试化学试卷
- 期末 (试题) -2024-2025学年人教PEP版(2024)英语三年级上册
- GB/T 32066-2024煤基费托合成液体石蜡
- 安庆市农业雪灾恢复重建和救灾资金使用情况总结
- 食品工程原理课程设计搅拌器的设计
评论
0/150
提交评论