版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省如东县高二数学第二学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆,定点,点为圆上的动点,点在上,点在线段上,且满足,,则点的轨迹方程是()A. B.C. D.2.中,,则的值是()A. B. C. D.或3.甲、乙两支球队进行比赛,预定先胜3局者获得比赛的胜利,比赛随即结束.结束除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立.则甲队以3:2获得比赛胜利的概率为()A. B. C. D.4.如图是某陀螺模型的三视图,则该陀螺模型的体积为()A. B.C. D.5.已知函数,其中,为自然对数的底数,若,是的导函数,函数在区间内有两个零点,则的取值范围是()A. B. C. D.6.下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:根据上表提供的数据,求出关于的线性回归方程为,那么表中的值为()A. B. C. D.7.函数的单调增区间为()A. B.C. D.8.某程序框图如图所示,若运行该程序后输出()A. B. C. D.9.直线y=x与曲线y=xA.52 B.32 C.210.关于x的不等式的解集中,恰有3个整数,则a的取值范围是()A. B. C. D.(4,5)11.下列函数中既是奇函数,又在区间上是单调递减的函数为()A. B. C. D.12.设是含数的有限实数集,是定义在上的函数,若的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,的可能取值只能是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等比数列的前项和为,若,,则________.14.等差数列中,若,则___________.15.函数的图象在处的切线与直线互相垂直,则_____.16.已知正数满足,则的最小值____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线的参数方程是以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,直线的极坐标方程为.(Ⅰ)写出曲线的普通方程和直线的直角坐标方程;;(Ⅱ)已知点为直线上的两个动点,且点为曲线上任意一点,求面积的最大值及此时点的直角坐标.18.(12分)如图,,是经过小城的东西方向与南北方向的两条公路,小城位于小城的东北方向,直线距离.现规划经过小城修建公路(,分别在与上),与,围成三角形区域.(1)设,,求三角形区域周长的函数解析式;(2)现计划开发周长最短的三角形区域,求该开发区域的面积.19.(12分)(1)设是两个正实数,且,求证:;(2)已知是互不相等的非零实数,求证:三个方程,,中至少有一个方程有两个相异实根.20.(12分)已知函数.(1)求的最小正周期和单调增区间;(2)求在区间上的最大值和最小值21.(12分)已知函数.(1)讨论函数的单调性;(2)当时,,求的取值范围.22.(10分)已知,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】试题分析:由,可知,直线为线段的中垂线,所以有,所以有,所以点的轨迹是以点为焦点的椭圆,且,即,所以椭圆方程为,故选A.考点:1.向量运算的几何意义;2.椭圆的定义与标准方程.【名师点睛】本题主要考查向量运算的几何意义、椭圆的定义与椭圆方程的求法,属中档题.求椭圆标准方程常用方法有:1.定义法,即根据题意得到所求点的轨迹是椭圆,并求出的值;2.选定系数法:根据题意先判断焦点在哪个坐标轴上,设出其标准方程,根据已知条件建立关系的方程组,解之即可.2、B【解题分析】
根据正弦定理求解.【题目详解】由正弦定理得,选B.【题目点拨】本题考查正弦定理,考查基本分析求解能力,属基础题.3、B【解题分析】若是3:2获胜,那么第五局甲胜,前四局2:2,所以概率为,故选B.4、C【解题分析】
几何体上部分为圆柱,下部分为圆锥,代入体积公式计算即可.【题目详解】解:几何体上部分为圆柱,下部分为圆锥,
其中圆柱的底面半径为1,高为2,圆锥的底面半径为1,高为1,所以几何体的体积.
故选:C.【题目点拨】本题考查了常见几何体的三视图与体积的计算,属于基础题.5、A【解题分析】
利用f(1)=0得出a,b的关系,根据f′(x)=0有两解可知y=2e2x与y=2ax+a+1﹣e2的函数图象在(0,1)上有两个交点,做出两函数图象,根据图象判断a的范围.【题目详解】解:∵f(1)=0,∴e2﹣a+b﹣1=0,∴b=﹣e2+a+1,∴f(x)=e2x﹣ax2+(﹣e2+a+1)x﹣1,∴f′(x)=2e2x﹣2ax﹣e2+a+1,令f′(x)=0得2e2x=2ax﹣a﹣1+e2,∵函数f′(x)在区间(0,1)内有两个零点,∴y=2e2x与y=2ax﹣a﹣1+e2的函数图象在(0,1)上有两个交点,作出y=2e2x与y=2ax﹣a﹣1+e2=a(2x﹣1)+e2﹣1函数图象,如图所示:若直线y=2ax﹣a﹣1+e2经过点(1,2e2),则a=e2+1,若直线y=2ax﹣a﹣1+e2经过点(0,2),则a=e2﹣3,∴e2﹣3<a<e2+1.故选:A.点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.6、A【解题分析】
先求出这组数据的样本中心点,样本中心点是用含有t的代数式表示的,把样本中心点代入变形的线性回归方程,得到关于t的一次方程,解方程,得到结果.【题目详解】∵由回归方程知=,解得t=3,故选A.【题目点拨】】本题考查回归分析的初步应用,考查样本中心点的性质,考查方程思想的应用,是一个基础题,解题时注意数字计算不要出错.7、D【解题分析】
先求出函数的定义域,然后求出函数的导函数,接着求当导函数大于零时,的取值范围,结合函数的定义域,最后写出单调增区间.【题目详解】函数的定义域为,,当时,函数单调递增,所以有或,而函数的定义域为,所以当时,函数单调递增,故本题选D.【题目点拨】本题考查了利用导数求函数单调增区间问题,解题的关系是结合定义域,正确求解导函数大于零这个不等式.8、D【解题分析】
通过分析可知程序框图的功能为计算,根据最终输出时的值,可知最终赋值时,代入可求得结果.【题目详解】根据程序框图可知其功能为计算:初始值为,当时,输出可知最终赋值时本题正确选项:【题目点拨】本题考查根据程序框图的功能计算输出结果,关键是能够明确判断出最终赋值时的取值.9、D【解题分析】
利用定积分的几何意义,首先利用定积分表示面积,然后计算即可.【题目详解】y=x与曲线y=xS=0故选:D.【题目点拨】本题考查了定积分的几何意义的应用,关键是正确利用定积分表示面积,属于基础题.10、A【解题分析】
不等式等价转化为,当时,得,当时,得,由此根据解集中恰有3个整数解,能求出的取值范围。【题目详解】关于的不等式,不等式可变形为,当时,得,此时解集中的整数为2,3,4,则;当时,得,,此时解集中的整数为-2,-1,0,则故a的取值范围是,选:A。【题目点拨】本题难点在于分类讨论解含参的二次不等式,由于二次不等式对应的二次方程的根大小不确定,所以要对和1的大小进行分类讨论。其次在观察的范围的时候要注意范围的端点能否取到,防止选择错误的B选项。11、B【解题分析】
由题意得,对于函数和函数都是非奇非偶函数,排除A、C.又函数在区间上单调递减,在区间单调递增,排除D,故选B.12、B【解题分析】
利用函数的定义即可得到结果.【题目详解】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,故选B.【题目点拨】本题考查函数的定义,即“对于集合A中的每一个值,在集合B中有唯一的元素与它对应”(不允许一对多).二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
设等比数列的公比为,根据题中条件求出的值,再由计算出的值.【题目详解】设等比数列的公比为,则,化简得,,故答案为:.【题目点拨】本题考查等比数列求和,对于等比数列,一般要建立首项和公比的方程组,利用方程思想求解,考查计算能力,属于中等题.14、10.【解题分析】
直接由等差数列的通项公式结合已知条件列式求解的值.【题目详解】在等差数列中,由,,,且,所以,所以.故答案为:10.【题目点拨】本题考查等差数列的通项公式,考查用基本量法求.15、1.【解题分析】
求函数的导数,根据导数的几何意义结合直线垂直的直线斜率的关系建立方程关系进行求解即可.【题目详解】函数的图象在处的切线与直线垂直,函数的图象在的切线斜率本题正确结果:【题目点拨】本题主要考查直线垂直的应用以及导数的几何意义,根据条件建立方程关系是解决本题的关键.16、【解题分析】
根据条件可得,然后利用基本不等式求解即可.【题目详解】,,当且仅当,即时取等号,的最小值为.故答案为.【题目点拨】本题考查了基本不等式及其应用,关键掌握“1“的代换,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析;(Ⅱ)见解析.【解题分析】
(Ⅰ)由参数方程利用消去,得到普通方程,由把极坐标化为普通方程。(Ⅱ)设点,由点到直线的距离和面积公式结合三角函数求得面积最值。【题目详解】(Ⅰ)曲线化为普通方程为,直线的直角坐标方程为.(Ⅱ)设点,则点到直线的距离.,∴当时,当点P的直角坐标为时,有最大值1.【题目点拨】由直角坐标与极坐标互换公式,利用这个公式可以实现直角坐标与极坐标的相互转化。18、(1)(2)开发区域的面积为【解题分析】分析:(1)先根据直角三角形求OA,OB,AB,再相加得三角形区域周长的函数解析式;(2)令,化简,再根据三角函数有界性确定t范围,解得最小值,同时求出开发区域的面积.详解:解:(方法一)(1)如图,过分别作、的垂线,垂足分别为、,因为小城位于小城的东北方向,且,所以,在和中,易得,,所以当时,,单调递减当时,,单调递增所以时,取得最小值.此时,,的面积答:开发区域的面积为(方法二)(1)在中,,即所以在中,所以(2)令,则因为,所以,所以由,得记因为在上单调递减,所以当时最小此时,即,所以的面积答:开发区域的面积为点睛:三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通过变换把函数化为的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.19、(1)见解析;(2)见解析【解题分析】
(1)先证明,再在两边同时乘以正数(a+b),不等式即得证;(2)利用反证法证明即可.【题目详解】(1)证明:∵,∴,∴,∴,而均为正数,∴,∴,∴成立.(2)证明:假设三个方程中都没有两个相异实根,则,,.相加有,.①则,与由题意、、互不相等矛盾.∴假设不成立,即三个方程中至少有一个方程有两个相异实根.【题目点拨】本题主要考查不等式的证明,考查反证法,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)最小正周期增区间为;(2)最大值和最小值分别为和.【解题分析】
(1)先将函数化简整理,得到,再由正弦函数的性质,即可得出结果;(2)先由的范围,得到的范围,进而可得出结果.【题目详解】(1)因为所以的最小正周期由,所以,因此,增区间为(2)因为,所以.所以当,即时,函数取得最大值当,即时,函数取得最小值所以在区间上的最大值和最小值分别为和【题目点拨】本题主要考查三角函数,熟记正弦函数的性质即可,属于常考题型.21、(1)详见解析(2)或【解题分析】
(1)将函数求导并化简,对分成两种情况,讨论函数的单调性.(2)原不等式即(),当时,上述不等式显然成立.当时,将不等式变为,构造函数,利用导数研究函数的单调性,由此求得的取值范围.【题目详解】解:(1).①若,当时,,在上单调递增;当时,,在上单调递减.②若,当时,,在上单调递减;当时,,在上单调递增.∴当时,在上单调递增,在上单调递减;当时,在上单调递减,在上单调递增.(2)(),当时,上不等式成立,满足题设条件;当时,,等价于,设,则,设(),则,∴在上单调递减,得.①当,即时,得,,∴在上单调递减,得,满足题设条件;②当,即时,,而,∴,,又单调递减,∴当,,得,∴在上单调递增,得,不满足题设条件;综上所述,或.【题目点拨】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋修缮安全合同协议书范本
- 考驾照合同模板
- 脐橙购销合同范本
- 快递店面转让合同快递转让合同大全
- 《环境微生物实验》课件
- 2024年度大型科学仪器共享服务协议
- 财务预算报告范文
- 《MATLAB编程及应用》全套教学课件
- 财务报告分析范文
- 购买树苗合同范本
- 宣讲教育家精神六个方面微课PPT
- 中考英语时态专项练习题(附答案)
- 计算机控制系统论文
- 地下工程监测与检测技术-第六章-地下工程中的地质雷达测试技术
- 工科中的设计思维学习通超星课后章节答案期末考试题库2023年
- 教科版科学五年级上册第7课 计量时间和我们的生活课件
- 华为认证 HCIA-Security 安全 H12-711考试题库(共800多题)
- 国开电大《小学数学教学研究》形考任务3答案
- 畜牧兽医专业课程与教学改革实施方案
- 电工仪表及测量课件
- 教师个人成长档案电子模板
评论
0/150
提交评论