版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省六安三校2024届数学高二第二学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,用6种不同的颜色把图中A,B,C,D四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为()A.400 B.460 C.480 D.4962.已知10件产品中,有7件合格品,3件次品,若从中任意抽取5件产品进行检查,则抽取的5件产品中恰好有2件次品的抽法有()A.种 B.种 C.种 D.种3.已知函数的图像关于直线对称,且对任意有,则使得成立的的取值范围是()A. B. C. D.4.不等式无实数解,则的取值范围是()A. B.C. D.5.已知命题p:|x-1|≥2,命题q:x∈Z,若“p且q”与“非q”同时为假命题,则满足条件的x为()A.{x|x≥3或x≤-1,x∈Z}B.{x|-1≤x≤3,x∈Z}C.{0,1,2}D.{-1,0,1,2,3}6.若焦点在轴上的双曲线的焦距为,则等于()A. B. C. D.7.设等比数列满足,,则的最大值为A.32 B.128 C.64 D.2568.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是()A.乙做对了 B.甲说对了 C.乙说对了 D.甲做对了9.已知空间向量OA向量OP=xOA+yOB+zOCA.12 B.1 C.3210.某一数学问题可用综合法和分析法两种方法证明,有5位同学只会用综合法证明,有3位同学只会用分析法证明,现任选1名同学证明这个问题,不同的选法种数有()种.A.8 B.15 C.18 D.3011.三棱锥中,,,为的中点,分别交,于点、,且,则三棱锥体积的最大值为()A. B. C. D.12.如图,用5种不同的颜色把图中、、、四块区域分开,若相邻区域不能涂同一种颜色,则不同的涂法共有()A.200种 B.160种 C.240种 D.180种二、填空题:本题共4小题,每小题5分,共20分。13.关于x的方程有两个正实根的概率是______;14.函数f(x)=-x-3a(x<0)ax-2(x≥0),(a>0且a≠1)是R上的减函数,则15.的展开式中第三项的系数为_________。16.若,则的值是_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,且.(1)设,求证数列是等比数列;(2)设,求数列的前项和.18.(12分)已知命题函数是上的奇函数,命题函数的定义域和值域都是,其中.(1)若命题为真命题,求实数的值;(2)若“且”为假命题,“或”为真命题,求实数的取值范围.19.(12分)已知函数(1)若函数的导函数为偶函数,求的值;(2)若曲线存在两条垂直于轴的切线,求的取值范围20.(12分)在同一平面直角坐标系中,经过伸缩变换后,曲线变为曲线,过点且倾斜角为的直线与交于不同的两点.(1)求曲线的普通方程;(2)求的中点的轨迹的参数方程(以为参数).21.(12分)某种设备的使用年限(年)和维修费用(万元),有以下的统计数据:34562.5344.5(Ⅰ)画出上表数据的散点图;(Ⅱ)请根据上表提供的数据,求出关于的线性回归方程;(Ⅲ)估计使用年限为10年,维修费用是多少万元?(附:线性回归方程中,其中,).22.(10分)等比数列的各项均为正数,且,.(1)求数列的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有种方法,用四种颜色涂色时,有种方法,根据分类计数原理得到结果.详解:只用三种颜色涂色时,有种方法,用四种颜色涂色时,有种方法,根据分类计数原理得不同涂法的种数为120+360=480.故答案为:C.点睛:(1)本题主要考查计数原理,考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用的方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.2、C【解题分析】
根据题意,分2步进行分析,第一步从3件次品中抽取2件次品,第二步从7件正品中抽取3件正品,根据乘法原理计算求得结果.【题目详解】根据题意,分2步进行分析:①.从3件次品中抽取2件次品,有种抽取方法,;②.从7件正品中抽取3件正品,有种抽取方法,则抽取的5件产品中恰好有2件次品的抽法有种;故选:C.【题目点拨】本题考查排列组合的实际应用,注意是一次性抽取,抽出的5件产品步需要进行排列.3、A【解题分析】∵函数的图象关于直线对称,∴函数的图象关于直线对称,∴函数为偶函数.又对任意有,∴函数在上为增函数.又,∴,解得.∴的取值范围是.选A.4、C【解题分析】
利用绝对值不等式的性质,因此得出的范围,再根据无实数解得出的范围。【题目详解】解:由绝对值不等式的性质可得,,即.因为无实数解所以,故选C。【题目点拨】本题考查了绝对值不等式的性质,利用绝对值不等式的性质解出变量的范围是解决问题的关键。5、C【解题分析】试题分析:由题意知q真,p假,∴|x-1|<1.∴-1<x<3且x∈Z.∴x=0,1,1.选C.考点:命题否定6、B【解题分析】分析:根据题意,由焦点的位置可得,又由焦距为,即,再由双曲线的几何性质可得,即可求得.详解:根据题意,焦点在轴上的双曲线,则,即,又由焦距为,即,则有,解得.故选:B.点睛:本题考查双曲线的几何性质,注意双曲线的焦点在y轴上,先求出a的范围.7、C【解题分析】
先求出通项公式公式,再根据指数幂的运算性质和等差数列的求和公式,可得,令,根据复合函数的单调性即可求出.【题目详解】由,,可得,解得,,,,令,当或时,有最小值,即,的最大值为,故选C.【题目点拨】本题考查了等比数列的通项公式等差数列的求和公式,指数幂的运算性质和复合函数的单调性,属于中档题8、B【解题分析】
分三种情况讨论:甲说法对、乙说法对、丙说法对,通过题意进行推理,可得出正确选项.【题目详解】分以下三种情况讨论:①甲的说法正确,则甲做错了,乙的说法错误,则甲做错了,丙的说法错误,则丙做对了,那么乙做错了,合乎题意;②乙的说法正确,则甲的说法错误,则甲做对了,丙的说法错误,则丙做对了,矛盾;③丙的说法正确,则丙做错了,甲的说法错误,则甲做对了,乙的说法错误,则甲做错了,自相矛盾.故选:B.【题目点拨】本题考查简单的合情推理,解题时可以采用分类讨论法进行假设,考查推理能力,属于中等题.9、A【解题分析】
由题求得OP的坐标,求得OP,结合4x+2y+z=4可得答案.【题目详解】=x+y,y,z,OP利用柯西不等式可得42∴OP故选A.【题目点拨】本题考查空间向量的线性坐标运算及空间向量向量模的求法,属基础题.10、A【解题分析】
本题是一个分类计数问题,解决问题分成两个种类,根据分类计数原理知共有3+5=8种结果.【题目详解】由题意知本题是一个分类计数问题,解决问题分成两个种类,一是可以用综合法证明,有5种方法,一是可以用分析法来证明,有3种方法,根据分类计数原理知共有3+5=8种结果,故选A.【题目点拨】本题考查分类计数问题,本题解题的关键是看清楚完成这个过程包含两种方法,看出每一种方法所包含的基本事件数,相加得到结果.11、B【解题分析】
由已知可知,是正三角形,从而,,进而,是的平分线,,由此能求出三棱锥体积的最大值.【题目详解】由题意得,,所以是正三角形,分别交,于点、,,,,,,,是的平分线,,以为原点,建立平面直角坐标系,如图:设,则,整理得,,因此三棱锥体积的最大值为.故选:B【题目点拨】本题考查了三棱锥的体积公式,考查了学生的空间想象能力,属于中档题.12、D【解题分析】
根据题意可知,要求出给四个区域涂色共有多少种方法,需要分步进行考虑;对区域A、B、C、D按顺序着色,推出其各有几种涂法,利用分步乘法计数原理,将各区域涂色的方法数相乘,所得结果即为答案.【题目详解】涂有5种涂法,有4种,有3种,因为可与同色,故有3种,∴由分步乘法计数原理知,不同涂法有种.故答案选D.【题目点拨】本题考查了排列组合中的涂色问题,处理区域涂色问题的基本方法为分步乘法计数原理.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由题意求出方程有两个正实根的的取值范围,再根据几何概型的概率计算公式即可求解.【题目详解】关于x的方程有两个正实根,设两个正实根为,则,解得,又,由几何概型的概率计算公式可得.故答案为:【题目点拨】本题考查了几何概型(长度型)的概率计算公式,属于基础题.14、(0,【解题分析】试题分析:因为函数f(x)=-x-3a(x<0)ax-2(x≥0)(a>0且a≠1)是R上的减函数,即⇒.故其每一段都为减函数,且前一段的最小值须大于等于后一段的最大值;故答案为考点:分段函数的单调性.【方法点晴】本题是对分段函数单调性的考查,难度适中,容易进入陷阱,要想整个函数单调递减,前提必须为分段函数的每一段都有自己的单调性,所以在研究整函数的单调性时每一段都在考查范围内.当函数为减函数时,故其每一段都为减函数,且前一段的最小值须大于等于后一段的最大值;当函数为增函数时,故其每一段都为增函数,且前一段的最大值须小于等于后一段的最小值.15、6【解题分析】
利用二项展开式的通项公式,当时得到项,再抽出其系数.【题目详解】,当时,,所以第三项的系数为,故填.【题目点拨】本题考查二项展开式的简单运用,考查基本运算能力,注意第3项不是,而是.16、2或7【解题分析】
由组合数的性质,可得或,求解即可.【题目详解】,或,解得或,故答案为2或7.【题目点拨】本题考查组合与组合数公式,属于基础题.组合数的基本性质有:①;②;③.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析(2)【解题分析】
(1)由已知数列递推式可得,又,得,从而可得数列是等比数列;
(2)由(1)求得数列的通项公式,得到数列的通项公式,进一步得到,然后分类分组求数列的前项和.【题目详解】(1)由已知得代入得又,所以数列是等比数列(2)由(1)得,,因为,,,且时,所以当时,当时,.所以【题目点拨】本题考查数列递推式,考查等比关系的确定,训练了数列的分组求和,属中档题.18、(1);(2).【解题分析】分析:(1)根据奇函数定义得f(-x)+f(x)=0,解得实数的值;(2)根据函数单调性得转化为对应一元二次方程有两个大于1的不相等实根,利用实根分布解得k的取值范围,由“p且q”为假命题,“p或q”为真命题,得命题p和q中有且仅有一个为真命题,根据真假列方程组解得实数的取值范围.详解:(1)若命题p为真命题,则f(-x)+f(x)=0,即,化简得对任意的x∈R成立,所以k=1.(2)若命题q为真命题,因为在[a,b]上恒成立,所以g(x)在[a,b]上是单调增函数,又g(x)的定义域和值域都是[a,b],所以所以a,b是方程的两个不相等的实根,且1<a<b.即方程有两个大于1的实根且不相等,记h(x)=k2x2-k(2k-1)x+1,故,解得,所以k的取值范围为.因为“p且q”为假命题,“p或q”为真命题,所以命题p和q中有且仅有一个为真命题,即p真q假,或p假q真.所以或所以实数k的取值范围为.点睛:以命题真假为依据求参数的取值范围时,首先要对两个简单命题进行化简,然后依据“p∨q”“p∧q”“非p”形式命题的真假,列出含有参数的不等式(组)求解即可.19、(1);(2)【解题分析】
(1)求出函数的导数,由于二次函数为偶函数,所以一次项系数为,进而求得a的值;(2)由题意得存在两个不同的根,转化成二次函数的判别式大于.【题目详解】(1)∵,由题因为为偶函数,∴,即(2)∵曲线存在两条垂直于轴的切线,∴关于的方程有两个不相等的实数根,∴,即,∴.∴a的取值范围为.【题目点拨】本题考查三次函数的导数、二次函数的奇偶性、二次函数根的分布问题,考查逻辑推理和运算求解能力,求解时要懂得把曲线存在两条垂直于轴的切线转化成方程有两根.20、(1)(2)(为参数,).【解题分析】
(1)根据变换原则可得,代入曲线的方程整理可得的方程;(2)写出直线的参数方程,根据与曲线有两个不同交点可确定倾斜角的范围;利用直线参数方程中参数的几何意义和韦达定理得到,求得后,代入直线参数方程后即可得到所求的参数方程.【题目详解】(1)由得:,代入得:,的普通方程为.(2)由题意得:的参数方程为:(为参数)与交于不同的两点,即有两个不等实根,即有两个不等实根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年消防设施检测与维保服务合同5篇
- 2025年度安置房质量保证合同书3篇
- 2025年水泥制品环保技术转移合同3篇
- 2025年度高空坠落防护HSE施工安全协议3篇
- 二零二五年房产销售代理与广告宣传协议3篇
- 二零二五年鲜活水产品运输与质量监管协议3篇
- 2025年度免租金停车场租赁合同模板
- 2025版棋牌室三方合作协议-创新管理与行业规范4篇
- 2025年污水处理站污水处理设施设备租赁与维修合同3篇
- 2025年度留学签证担保与资金证明服务合同3篇
- 公司组织架构图(可编辑模版)
- 1汽轮机跳闸事故演练
- 陕西省铜川市各县区乡镇行政村村庄村名居民村民委员会明细
- 礼品(礼金)上交登记台账
- 普通高中英语课程标准词汇表
- 北师大版七年级数学上册教案(全册完整版)教学设计含教学反思
- 2023高中物理步步高大一轮 第五章 第1讲 万有引力定律及应用
- 青少年软件编程(Scratch)练习题及答案
- 浙江省公务员考试面试真题答案及解析精选
- 系统性红斑狼疮-第九版内科学
- 全统定额工程量计算规则1994
评论
0/150
提交评论