版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西梧州市岑溪市数学高二第二学期期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是函数的导函数,的图象如图所示,则的图象最有可能的是()A. B.C. D.2.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大221032课外阅读量一般82028总计303060由以上数据,计算得到的观测值,根据临界值表,以下说法正确的是()P(K2≥k0)0.500.400.250.150.100.050.050.0100.005k00.4550.7081.3232.0722.7063.8415.0246.6357.879A.在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”B.在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关C.在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关D.在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关3.设表示直线,是平面内的任意一条直线,则“”是“”成立的()条件A.充要 B.充分不必要C.必要不充分 D.既不充分也不必要4.一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有()A.12种 B.15种 C.17种 D.19种5.方程所表示的曲线是()A.双曲线的一部分 B.椭圆的一部分 C.圆的一部分 D.直线的一部分6.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值为()附:若X∼N(μ,σ2),则PA.1193 B.1359 C.2718 D.34137.曲线在点处的切线方程是()A. B. C. D.8.给出定义:设是函数的导函数,是函数的导函数,若方程有实数解,则称点为函数的“拐点”.已知函数的拐点是,则()A. B. C. D.19.设a=e1eA.a>c>b B.c>a>b C.c>b>a D.a>b>c10.对于函数,“的图象关于轴对称”是“=是奇函数”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要11.曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取同学乙猜:刘云被清华大学录取,张熙被北京大学录取同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取同学丁猜:刘云被清华大学录取,张熙被武汉大学录取结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对那么曾玉、刘云、李梦、张熙四人被录取的大小可能是()A.北京大学、清华大学、复旦大学、武汉大学B.武汉大学、清华大学、复旦大学、北京大学C.清华大学、北京大学、武汉大学、复旦大学D.武汉大学、复旦大学、清华大学、北京大学12.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“若x=y,则sinx=siny”的逆否命题为真命题D.命题“∃x0∈R使得”的否定是“∀x∈R,均有x2+x+1<0”二、填空题:本题共4小题,每小题5分,共20分。13.在棱长均为的正三棱柱中,________.14.在四面体中,,已知,,且,则四面体的体积的最大值为_______.15.设双曲线的离心率为,其渐近线与圆相切,则________.16.已知是夹角为的两个单位向量,,则___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知向量,满足,.(1)求关于k的解析式f(k).(2)若,求实数k的值.(3)求向量与夹角的最大值.18.(12分)已知数列的前项的和,满足,且.(1)求数列的通项公式;(2)若数列满足:,求数列的前项的和.19.(12分)如图,在四边形中,,,四边形为矩形,且平面,.(1)求证:平面;(2)求二面角的余弦值.20.(12分)已知函数,其中.(1)讨论的单调性;(2)当时,恒成立,求的值;(3)确定的所有可能取值,使得对任意的,恒成立.21.(12分)已知函数.(1)若函数的图象在处的切线方程为,求,的值;(2)若,,使成立,求的取值范围.22.(10分)已知抛物线的焦点为抛物线上的两动点,且,过两点分别作抛物线的切线,设其交点为.(1)证明:为定值;(2)设的面积为,写出的表达式,并求的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据导函数图象,确定出函数的单调区间和极值,从而可得结论.【题目详解】根据的图象可知,当或时,,所以函数在区间和上单调递增;当时,,所以函数在区间上单调递减,由此可知函数在和处取得极值,并且在处取得极大值,在处取得极小值,所以的图象最有可能的是C.故选:C.【题目点拨】本题考查导数与函数单调性、极值的关系,考查数形结合思想和分析能力.解决此类问题,要根据导函数的图象确定原函数的单调区间和极值,一定要注意极值点两侧导数的符号相反.2、D【解题分析】分析:根据临界值表,确定犯错误的概率详解:因为根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关.选D.点睛:本题考查卡方含义,考查基本求解能力.3、A【解题分析】
根据充分条件和必要条件的定义分别进行判断即可。【题目详解】因为是平面内的任意一条直线,具有任意性,若,由线面垂直的判断定理,则,所以充分性成立;反过来,若,是平面内的任意一条直线,则,所以必要性成立,故“”是“”成立的充要条件。故选:A【题目点拨】本题主要考查了充分条件、必要条件的判断,意在考查考生对基本概念的掌握情况。4、D【解题分析】试题分析:分三类:第一类,有一次取到3号球,共有取法;第二类,有两次取到3号球,共有取法;第三类,三次都取到3号球,共有1种取法;共有19种取法.考点:排列组合,分类分步记数原理.5、B【解题分析】
方程两边平方后可整理出椭圆的方程,由于的值只能取非负数,推断出方程表示的曲线为一个椭圆的一部分.【题目详解】解:两边平方,可变为,即,表示的曲线为椭圆的一部分;故选:.【题目点拨】本题主要考查了曲线与方程.解题的过程中注意的范围,注意数形结合的思想.6、B【解题分析】由正态分布的性质可得,图中阴影部分的面积S=0.9545-0.6827则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值为本题选择B选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.7、D【解题分析】
求导得到,故,计算切线得到答案.【题目详解】,,,所以切线方程为,即.故选:.【题目点拨】本题考查了切线方程,意在考查学生的计算能力.8、D【解题分析】
遇到新定义问题,分析新定义的特点,弄清新定义的性质,按新定义的要求,在该题中求出原函数的导函数,再求出导函数的导函数,由导函数的导函数等于0,即可得到拐点,问题得以解决.【题目详解】解:函数,,,因为方程有实数解,则称点,为函数的“拐点”,已知函数的“拐点”是,所以,即,故选:.【题目点拨】本题考查导数的运算.导数的定义,和拐点,根据新定义题,考查了函数导函数零点的求法;解答的关键是函数值满足的规律,属于基础题9、B【解题分析】
依据y=lnx的单调性即可得出【题目详解】∵b=ln而a=e1e>0,c=又lna=lne1所以lnc>lna,即有c>a,因此c>a>b【题目点拨】本题主要考查利用函数的单调性比较大小。10、B【解题分析】
由奇函数,偶函数的定义,容易得选项B正确.11、D【解题分析】
推理得到甲对了前一半,乙对了后一半,丙对了后一半,丁全错,得到答案.【题目详解】根据题意:甲对了前一半,乙对了后一半,丙对了后一半,丁全错,曾玉、刘云、李梦、张熙被录取的大学为武汉大学、复旦大学、清华大学、北京大学(另外武汉大学、清华大学、北京大学、复旦大学也满足).故选:.【题目点拨】本题考查了逻辑推理,意在考查学生的推理能力.12、C【解题分析】命题“若x2=1,则x=1”的否命题为“若x2≠1,则x≠1”,A不正确;由x2-5x-6=0,解得x=-1或6,因此“x=-1”是“x2-5x-6=0”的充分不必要条件,B不正确;命题“若x=y,则sinx=siny”为真命题,其逆否命题为真命题,C正确;命题“∃x0∈R使得+x0+1<0”的否定是“∀x∈R,均有x2+x+1≥0”,D不正确.综上可得只有C正确.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
首先画出正三棱柱,求出边长和,最后求面积.【题目详解】因为是正三棱柱,并且棱长都为1,是腰长为,底边长为1的等腰三角形,所以底边的高,.故答案为【题目点拨】本题考查几何体中几何量的求法,意在考查空间想象能力,属于基础题型.14、【解题分析】
作与,连接,说明与都在以为焦点的椭球上,且都垂直与焦距,,取BC的中点F,推出当是等腰直角三角形时几何体的体积最大,求解即可.【题目详解】解:作与,连接,则平面,,由题意,与都在以为焦点的椭球上,且都垂直与焦距且垂足为同一点E,显然与全等,所以,取BC的中点F,,要四面体ABCD的体积最大,因为AD是定值,只需三角形EBC面积最大,因为BC是定值,所以只需EF最大即可,当是等腰直角三角形时几何体的体积最大,,,,所以几何体的体积为:,故答案为:.【题目点拨】本题考查棱锥的体积,考查空间想象能力以及计算能力,是中档题.15、【解题分析】
写出双曲线的渐近线方程,将渐近线与圆相切,转化为圆心到渐近线的距离等于圆的半径,于此可求出的值.【题目详解】由题意可知,双曲线的渐近线方程为,即,且,圆心到渐近线的距离为,化简得,解得,故答案为.【题目点拨】本题考查双曲线的几何性质,考查双曲线的渐近线以及直线与圆相切的问题,问题的关键就是将双曲线的渐近线方程表示出来,同时也要注意直线与圆相切的转化,考查计算能力,属于中等题.16、【解题分析】
先计算得到,再计算,然后计算.【题目详解】是夹角为的两个单位向量故答案为【题目点拨】本题考查了向量的计算和模,属于向量的常考题型,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解题分析】
(1)根据向量的数量积即可.(2)根据向量平行时的条件即可.(3)根据向量的夹角公式即可.【题目详解】(1)由已知,有,.又因为,得,所以,即.(2)因为,,所以,则与同向.因为,所以,即,整理得,所以,所以当时,.(3)设与的夹角为θ,则.当,即时,取最小值,此时.【题目点拨】本题主要考查了向量的平以及数量积和夹角,属于基础题.18、(1);(2).【解题分析】
(1)根据得到,再得到,两式作差,判断出数列为等差数列,进而可得出结果;(2)根据(1)的结果,利用错位相减法,即可求出结果.【题目详解】解:(1)由条件得:,两式相减得:.........①,则有.....②①-②得:,所以数列是等差数列,①当,即①即.(2)①,②两式相减得【题目点拨】本题主要考查等差数列的通项公式,以及错位相减法求和,熟记等差数列的通项公式、求和公式,以及错位相减法的一般步骤即可,属于常考题型.19、(1)见解析(2)【解题分析】
(1)要证平面,可证平面即可,通过勾股定理可证明,再利用线面垂直可证,于是得证;(2)建立空间直角坐标系,求出平面的一个法向量和平面的一个法向量,再利用数量积公式即得答案.【题目详解】(1)证明:在梯形中,∵,设又∵,∴∴∴,则∵平面,平面∴,而∴平面∵,∴平面(2)分别以直线为轴,轴,轴建立如图所示的空间直角坐标系设则,,,,∴,,设为平面的一个法向量,由,得,取,则∵是平面的一个法向量,∴∴二面角的余弦值为.【题目点拨】本题主要考查线面垂直证明,二面角的相关计算,意在考查学生的空间想象能力,转化能力,逻辑推理能力及计算能力,难度中等.20、(1)答案不唯一,具体见解析(2)(3)【解题分析】
(1)求出导函数,通过当时,当时,判断函数的单调性即可.
(2)由(1)及知所以,令,利用导数求出极值点,转化求解.
(3)记,则,说明,由(2),,所以利用放缩法,转化求解即可..【题目详解】解:(1)当时,函数在上单调递减当时,函数在上单调递减,在上单调递增(2)由(1)及知所以令,则,所以,且等号当且仅当时成立若当时,恒成立,则(3)记则又,故在的右侧递增,,由(2),,所以当时,综上的取值范围是【题目点拨】本题主要考查导数法研究函数的单调性,基本思路:当函数是增函数时,导数大于等于零恒成立,当函数是减函数时,导数小于等于零恒成立,然后转化为求相应函数的最值问题.注意放缩法的应用.21、(1).(2).【解题分析】分析:的图象在处的切线方程为,得出(1,)坐标带入中,及=,即可解出,的值(2)构造函数,在上的最大值为,问题等价于:,不等式恒成立,构造>进行解决问题详解:,(1),,由,得.令,,所以函数在上单调递增,又,所以.(2)令,因为当时,函数在上单调递增,所以,于是函数在上一定单调递增.所以在上的最大值为.于是问题等价于:,不等式恒成立.记,则.当时,因为,,所以,则在区间上单调递减,此时,,不合题意.故必有.若,由可知在区间上单调递减,在此区间上,有,与恒成立矛盾.故,这时,在上单调递增,恒有,满足题设要求.所以,即.所以的取值范围为.点晴:本题主要考察导数综合题:能成立恒成立问题,这类型题目主要就是最值问题,学会对问题的转化是关键,本题主要在做题的过程中构造函数后发现是解决本题的关键。22、(Ⅰ)定值为0;(2)S=,S取得最小值1.【解题分析】分析:(1)设A(x1,y1),B(x2,y2),M(xo,yo),根据抛物线方程可得焦点坐标和准线方程,设直线方程与抛物线方程联立消去y,根据判别式大于0求得和,根据曲线1y=x2上任意一点斜率为y′=,可得切线AM和BM的方程,联立方程求得交点坐标,求得和,进而可求得的结果为0,进
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度绿色能源项目投资定金合同附属协议书2篇
- 二零二五年度权威解读!欠条法律风险防范及处理合同3篇
- 二零二五年度白酒定制生产与品牌发展合同2篇
- 二零二五年度高铁安装工程设备磨损保险合同2篇
- 2025年度西餐厅经营管理权租赁合同3篇
- 二零二五年度航空货运代理航空货物包装材料供应合同3篇
- 展会展台拆除合同(2篇)
- 小区道路工程承包合同(2篇)
- 2025年餐饮食材配送与售后服务合同协议3篇
- 二零二五年度航空航天零部件耗材采购合同范本3篇
- 幼儿园反恐防暴技能培训内容
- 食品企业质检员聘用合同
- 中医诊所内外部审计制度
- 自然辩证法学习通超星期末考试答案章节答案2024年
- 2024年国家危险化学品经营单位安全生产考试题库(含答案)
- 护理员技能培训课件
- 家庭年度盘点模板
- 河南省郑州市2023-2024学年高二上学期期末考试 数学 含答案
- 2024年资格考试-WSET二级认证考试近5年真题集锦(频考类试题)带答案
- 试卷中国电子学会青少年软件编程等级考试标准python三级练习
- 公益慈善机构数字化转型行业三年发展洞察报告
评论
0/150
提交评论