版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省东莞市北京师范大学石竹附属学校数学高二第二学期期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用反证法证明命题“若,则全为”,其反设正确的是()A.至少有一个不为 B.至少有一个为C.全不为 D.中只有一个为2.已知,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件3.如图梯形ABCD中,AD∥BC,∠ABC=90°,AD∶BC∶AB=2∶3∶4,E,F分别是AB,CD的中点,将四边形ADFE沿直线EF进行翻折,给出四个结论:①DF⊥BC;②BD⊥FC;③平面DBF⊥平面BFC;④平面DCF⊥平面BFC.则在翻折过程中,可能成立的结论的个数为()A.1 B.2 C.3 D.44.欧拉公式(为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数集,建立了三角函数和指数函数的关系,它在复变函数论里占有非常重要的地位,被誉为“数学中的天桥”,根据欧拉公式可知,表示的复数的虚部为()A. B. C. D.5.设定点,动圆过点且与直线相切.则动圆圆心的轨迹方程为()A. B. C. D.6.用反证法证明命题“已知函数在上单调,则在上至多有一个零点”时,要做的假设是()A.在上没有零点 B.在上至少有一个零点C.在上恰好有两个零点 D.在上至少有两个零点7.若,则“成等比数列”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件8.已知,是两条不同直线,,是两个不同平面,则下列命题正确的是()(A)若,垂直于同一平面,则与平行(B)若,平行于同一平面,则与平行(C)若,不平行,则在内不存在与平行的直线(D)若,不平行,则与不可能垂直于同一平面9.已知随机变量服从正态分布,且,则()A.0.6826 B.0.1587 C.0.1588 D.0.341310.为直线,为平面,则下列命题中为真命题的是()A.若,,则 B.则,,则C.若,,则 D.则,,则11.若,满足约束条件,则的最大值为()A.-2 B.-1 C.2 D.412.是双曲线的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点,若,则的离心率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若命题:是真命题,则实数的取值范围是______.14.的展开式中常数项为__________.(有数字填写答案)15.现有3位男学生3位女学生排成一排照相,若男学生站两端,3位女学生中有且只有两位相邻,则不同的排法种数是_____.(用数字作答)16.设等差数列的前项和为,则成等差数列.类比以上结论有:设等比数列的前项积为,则,__________,成等比数列.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知时,函数,对任意实数都有,且,当时,(1)判断的奇偶性;(2)判断在上的单调性,并给出证明;(3)若且,求的取值范围.18.(12分)毕业季有位好友欲合影留念,现排成一排,如果:(1)、两人不排在一起,有几种排法?(2)、两人必须排在一起,有几种排法?(3)不在排头,不在排尾,有几种排法?19.(12分)已知.(1)求函数的单调递增区间与对称轴方程;(2)当时,求的最大值与最小值.20.(12分)已知函数.(1)讨论的单调性;(2)当时,若恒成立,求的取值范围.21.(12分)如图几何体中,底面为正方形,平面,,且.(1)求证:平面;(2)求与平面所成角的大小.22.(10分)我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽样的办法在我校高一年级抽出一个有60人的班级进行问卷调查,得到如下的列联表:喜欢不喜欢合计男生18女生6合计60已知从该班随机抽取1人为喜欢的概率是.(Ⅰ)请完成上面的列联表;(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.参考临界值表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828参考公式:其中
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】由反证法的定义:证明命题“若,则全为”,其反设为至少有一个不为.本题选择A选项.2、A【解题分析】
“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【题目详解】a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选A.【题目点拨】充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.3、B【解题分析】分析:利用空间中线线、线面、面面间的位置关系求解.详解:对于①:因为BC∥AD,AD与DF相交不垂直,所以BC与DF不垂直,则①错误;对于②:设点D在平面BCF上的射影为点P,当BP⊥CF时就有BD⊥FC,而AD:BC:AB=2:3:4可使条件满足,所以②正确;对于③:当点P落在BF上时,DP⊂平面BDF,从而平面BDF⊥平面BCF,所以③正确;对于④:因为点D的投影不可能在FC上,所以平面DCF⊥平面BFC不成立,即④错误.故选B.点睛:本题考查命题真假的判断,解题时要认真审题,注意空间思维能力的培养.4、C【解题分析】
先由题意得到,进而可求出结果.【题目详解】由题意可得:,所以虚部为.故选C【题目点拨】本题主要考查复数的应用,熟记复数的概念即可,属于常考题型.5、A【解题分析】
由题意,动圆圆心的轨迹是以为焦点的抛物线,求得,即可得到答案.【题目详解】由题意知,动圆圆心到定点与到定直线的距离相等,所以动圆圆心的轨迹是以为焦点的抛物线,则方程为故选A【题目点拨】本题考查抛物线的定义,属于简单题.6、D【解题分析】分析:利用反证法证明,假设一定是原命题的完全否定,从而可得结果.详解:因为“至多有一个”的否定是“至少有两个”,所以用反证法证明命题“已知函数在上单调,则在上至多有一个零点”时,要做的假设是在上至少有两个零点,故选D.点睛:反证法的适用范围是,(1)否定性命题;(2)结论涉及“至多”、“至少”、“无限”、“唯一”等词语的命题;(3)命题成立非常明显,直接证明所用的理论较少,且不容易证明,而其逆否命题非常容易证明;(4)要讨论的情况很复杂,而反面情况较少.7、B【解题分析】分析:根据等比数列的定义和等比数列的性质,即可判定得到结论.详解:由题意得,例如,此时构成等比数列,而不成立,反之当时,若,则,所以构成等比数列,所以当时,构成等比数列是构成的等比数列的必要不充分条件,故选B.点睛:本题主要考查了等比数列的定义和等比数列的性质,其中熟记等比数列的性质和等比数列的定义的应用是解答的关键,着重考查了推理与论证能力.8、D【解题分析】由,若,垂直于同一平面,则,可以相交、平行,故不正确;由,若,平行于同一平面,则,可以平行、重合、相交、异面,故不正确;由,若,不平行,但平面内会存在平行于的直线,如平面中平行于,交线的直线;由项,其逆否命题为“若与垂直于同一平面,则,平行”是真命题,故项正确.所以选D.考点:1.直线、平面的垂直、平行判定定理以及性质定理的应用.9、D【解题分析】分析:根据随机变量符合正态分布,知这组数据是以为对称轴的,根据所给的区间的概率与要求的区间的概率之间的关系,单独要求的概率的值.详解:∵机变量服从正态分布,,
,
∴.故选:D.点睛:本题考查正态分布曲线的特点及曲线所表示的意义,考查根据正态曲线的性质求某一个区间的概率,属基础题.10、B【解题分析】
根据空间中平面和直线平行和垂直的位置关系可依次通过反例排除,从而得到结果.【题目详解】选项:若,则与未必平行,错误选项:垂直于同一平面的两条直线互相平行,正确选项:垂直于同一平面的两个平面可能相交也可能平行,错误选项:可能与平行或相交,错误本题正确选项:【题目点拨】本题考查空间中直线与直线、直线与平面、平面与平面位置关系的相关命题的判定,通常通过反例,采用排除法的方式来得到结果,属于基础题.11、C【解题分析】分析:要先根据约束条件画出可行域,再转化目标函数,把求目标函数的最值问题转化成求截距的最值问题详解:如图所示可行域:,故目标函数在点(2,0)处取得最大值,故最大值为2,故选C.点睛:本题考查线性规划,须准确画出可行域.还要注意目标函数的图象与可行域边界直线的倾斜程度(斜率的大小).属简单题12、A【解题分析】试题分析:由题意得,因此,选A.考点:双曲线离心率【名师点睛】求双曲线的离心率(取值范围)的策略求双曲线离心率是一个热点问题.若求离心率的值,需根据条件转化为关于a,b,c的方程求解,若求离心率的取值范围,需转化为关于a,b,c的不等式求解,正确把握c2=a2+b2的应用及e>1是求解的关键.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】试题分析:命题:“对,”是真命题.当时,则有;当时,则有且,解得.综上所示,实数的取值范围是.考点:1.全称命题;2.不等式恒成立14、16【解题分析】展开式的次项与形成常数项,展开式的常数项和1形成常数项,所以展开式的次项为,常数项为1,所以的展开式中常数项为15+1=1615、72【解题分析】
对6个位置进行编号,第一步,两端排男生;第二步,2,3或4,5排两名女生,则剩下位置的排法是固定的.【题目详解】第一步:两端排男生共,第二步:2,3或4,5排两名女生共,由乘法分步原理得:不同的排法种数是.【题目点拨】本题若没有注意2位相邻女生的顺序,易出现错误答案.16、【解题分析】由于等差数列的特征是差,等比数列的特征是比,因此运用类比推理的思维方法可得:,,成等比数列,应填答案。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)偶函数.(2)见解析.(3).【解题分析】
(1)利用赋值法得到,即得函数的奇偶性.(2)利用函数单调性的定义严格证明.(3)先求出,再解不等式.【题目详解】(1)令,则,,为偶函数.(2)设,,∵时,,∴,∴,故在上是增函数.(3)∵,又∴∵,∴,即,又故.【题目点拨】(1)本题主要考查抽象函数的单调性、奇偶性的证明,考查函数的图像和性质的运用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)用定义法判断函数的单调性的一般步骤:①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、配方等);④判断的正负符号;⑤根据函数单调性的定义下结论.18、(1);(2);(3).【解题分析】
(1)利用插空法可求出排法种数;(2)利用捆绑法可求出排法种数;(3)分两种情况讨论:①若在排尾;②若不在排尾.分别求出每一种情况的排法种数,由加法原理计算可得出答案.【题目详解】(1)将、插入到其余人所形成的个空中,因此,排法种数为;(2)将、两人捆绑在一起看作一个复合元素和其他人去安排,因此,排法种数为;(3)分以下两种情况讨论:①若在排尾,则剩下的人全排列,故有种排法;②若不在排尾,则有个位置可选,有个位置可选,将剩下的人全排列,安排在其它个位置即可,此时,共有种排法.综上所述,共有种不同的排法种数.【题目点拨】本题考查了排列、组合的应用,同时也考查了插空法、捆绑法以及分类计数原理的应用,考查计算能力,属于中等题.19、(1)单调递增区间为,k∈Z.对称轴方程为,其中k∈Z.(2)f(x)的最大值为2,最小值为–1.【解题分析】(1)因为,由,求得,k∈Z,可得函数f(x)的单调递增区间为,k∈Z.由,求得,k∈Z.故f(x)的对称轴方程为,其中k∈Z.(2)因为,所以,故有,故当即x=0时,f(x)的最小值为–1,当即时,f(x)的最大值为2.20、(1)见解析(2)【解题分析】
(1)先求得函数的导函数,然后根据三种情况,讨论的单调性.(2)由题可知在上恒成立,构造函数,利用导数研究的单调性和最值,对分成两种进行分类讨论,根据在上恒成立,求得的取值范围.【题目详解】(1),当时,令,得,令,得或,所以在上单调递增,在上单调递减.当时,在上单调递增.当时,令,得,令,得或,所以在上单调递减,在上单调递增.(2)由题可知在上恒成立,令,则,令,则,所以在上为减函数,.当时,,即在上为减函数,则,所以,即,得.当时,令,若,则,所以,所以,又,所以在上有唯一零点,设为,在上,,即单调递增,在上,,即单调递减,则的最大值为,所以恒成立.由,得,则.因为,所以,由,得.记,则,所以在上是减函数,故.综上,的取值范围为.【题目点拨】本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京工业大学浦江学院《客房运营与管理》2022-2023学年第一学期期末试卷
- 《新年好》说课稿
- 中学语文教学反思15
- 南京工业大学《仪器分析测试原理与应用》2022-2023学年第一学期期末试卷
- 南京工业大学《隧道工程》2023-2024学年第一学期期末试卷
- 南京工业大学《桥梁工程》2023-2024学年第一学期期末试卷
- 南京工业大学《交通管理与控制》2023-2024学年第一学期期末试卷
- 南京工业大学《激光原理与技术》2023-2024学年第一学期期末试卷
- 物理医学课件教学课件
- 设计素描教案内页
- 食品智能化加工技术
- 2022年版 义务教育《数学》课程标准
- 广东广州市白云区人民政府棠景街道办事处招考聘用政府雇员笔试题库含答案解析
- 煤矿采掘大数据分析与应用
- 2024重度哮喘诊断与处理中国专家共识解读课件
- 老年专科护理考试试题
- 成人住院患者静脉血栓栓塞症Caprini、Padua风险评估量表
- 小班安全我要跟着老师走
- (正式版)JBT 14795-2024 内燃机禁用物质要求
- 基于核心素养初中数学跨学科教学融合策略
- 200TEU 长江集装箱船设计
评论
0/150
提交评论