河南省淮阳县第一高级中学2024届高二数学第二学期期末联考试题含解析_第1页
河南省淮阳县第一高级中学2024届高二数学第二学期期末联考试题含解析_第2页
河南省淮阳县第一高级中学2024届高二数学第二学期期末联考试题含解析_第3页
河南省淮阳县第一高级中学2024届高二数学第二学期期末联考试题含解析_第4页
河南省淮阳县第一高级中学2024届高二数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省淮阳县第一高级中学2024届高二数学第二学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,,若,则()A.-5 B.5 C.1 D.-12.将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向右平移个单位长度,则所得图象对应的函数的解析式为()A. B.C. D.3.已知i是虚数单位,则复数的共轭复数在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知直线y=x+1与曲线y=A.1B.2C.-1D.-25.已知的展开式中的系数为,则()A.1 B. C. D.6.大学生小红与另外3名大学生一起分配到乡镇甲、乙、丙3个村小学进行支教,若每个村小学至少分配1名大学生,则小红恰好分配到甲村小学的方法数为()A.3 B.18 C.12 D.67.老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是()A.随机抽样 B.分层抽样 C.系统抽样 D.以上都是8.定义在R上的函数f(x)满足f(-x)=-f(x),f(x)=f(x+4),且x∈(-1,0)时,f(x)=2x+A.1B.45C.-1D.9.为了解某高校高中学生的数学运算能力,从编号为0001,0002,…,2000的2000名学生中采用系统抽样的方法抽取一个容量为50的样本,并把样本编号从小到大排列,已知抽取的第一个样本编号为0003,则最后一个样本编号是()A.0047 B.1663 C.1960 D.196310.若函数没有极值,则实数a的取值范围是()A. B. C. D.11.幂函数的图象过点,那么的值为()A. B.64 C. D.12.下面是列联表:合计2163223557合计56120则表中的值分别为()A.84,60 B.42,64 C.42,74 D.74,42二、填空题:本题共4小题,每小题5分,共20分。13.已知复数满足,则等于______.14.在正方体ABCD﹣A1B1C1D1,二面角A﹣BD﹣A1的大小为_____.15.多项式的展开式中,含项的系数是________.16.已知,且,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线过点,其参数方程为(t为参数,),以为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为.求曲线的普通方程和曲线的直角坐标方程;已知曲线和曲线交于两点,且,求实数的值.18.(12分)在平面直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数).(1)当时,求直线与曲线的普通方程;(2)若直线与曲线交于两点,直线的倾斜角范围为,点为直线与轴的交点,求的最小值.19.(12分)设函数.(1)若对于一切实数,恒成立,求实数的取值范围;(2)若对于,恒成立,求实数的取值范围.20.(12分)已知函数f(x)=lnx+bx-c,f(x)在点(1,f(1))处的切线方程为(1)求f(x)的解析式;(2)求f(x)的单调区间;(3)若函数f(x)在定义域内恒有f(x)≥2lnx+kx成立,求21.(12分)如图,在四棱锥中,底面为矩形,平面,为棱的中点,,,.(1)证明:平面.(2)求二面角的余弦值.22.(10分)已知均为正数,证明:,并确定为何值时,等号成立.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

通过平行可得m得值,再通过数量积运算可得结果.【题目详解】由于,故,解得,于是,,所以.故选A.【题目点拨】本题主要考查共线与数量积的坐标运算,考查计算能力.2、D【解题分析】分析:依据题的条件,根据函数的图像变换规律,得到相应的函数解析式,利用诱导公式化简,可得结果.详解:根据题意,将函数的图象上各点的横坐标伸长到原来的倍(纵坐标不变),得到的函数图像对应的解析式为,再将所得图象向右平移个单位长度,得到的函数图像对应的解析式为,故选D.点睛:该题考查的是有关函数图像的变换问题,在求解的过程中,需要明确伸缩变换和左右平移对应的规律,影响函数解析式中哪一个参数,最后结合诱导公式化简即可得结果.3、A【解题分析】

先将复数化为代数形式,再根据共轭复数的概念确定对应点,最后根据对应点坐标确定象限.【题目详解】解:∵,∴,∴复数z的共轭复数在复平面内对应的点的坐标为(),所在的象限为第一象限.故选:A.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为4、B【解题分析】设切点P(x0,y∴x5、D【解题分析】

由题意可得展开式中x2的系数为前一项中常数项与后一项x的二次项乘积,加上第一项x的系数与第二项x的系数乘积的和,由此列方程求得a的值.【题目详解】根据题意知,的展开式的通项公式为,∴展开式中含x2项的系数为a=,即10﹣5a=,解得a=.故选D.【题目点拨】本题主要考查了二项式定理的应用问题,利用二项式展开式的通项公式是解决此类问题的关键.6、C【解题分析】

分两种情况计算:有一人和小红同地,无人与小红同地.【题目详解】大学生小红与另外3名大学生一起分配到某乡镇甲、乙、丙3个村小学进行支教,每个村小学至少分配1名大学生,分两种情况计算:有一人和小红同地,无人与小红同地.小红恰好分配到甲村小学包含的基本事件个数.故选:C【题目点拨】本题主要考查排列组合的综合应用,意在考查学生对该知识的理解掌握水平和分析推理能力.7、C【解题分析】

对50名学生进行编号,分成10组,组距为5,第一组选5,其它依次加5,得到样本编号.【题目详解】对50名学生进行编号,分成10组,组距为5,第一组选5,从第二组开始依次加5,得到样本编号为:5,10,15,20,25,30,35,40,45,50,属于系统抽样.【题目点拨】本题考查系统抽样的概念,考查对概念的理解.8、C【解题分析】试题分析:由于,因此函数为奇函数,,故函数的周期为4,,即,,,故答案为C考点:1、函数的奇偶性和周期性;2、对数的运算9、D【解题分析】,故最后一个样本编号为,故选D.10、A【解题分析】

由已知函数解析式可得导函数解析式,根据导函数不变号,函数不存在极值点,对讨论,可得答案.【题目详解】∵,∴,①当时,则,在上为增函数,满足条件;②当时,则,即当时,恒成立,在上为增函数,满足条件综上,函数不存在极值点的充要条件是:.故选:A.【题目点拨】本题考查的知识点是函数在某点取得极值的条件,本题是一道基础题.11、A【解题分析】

设幂函数的解析式为∵幂函数的图象过点.选A12、B【解题分析】因,故,又,则,应选答案B。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

先求出复数z,再求|z|.【题目详解】由题得.故答案为【题目点拨】(1)本题主要考查复数的计算和复数的模的计算,意在考查学生对这些知识的掌握水平和基本的计算能力.(2)复数的模.14、【解题分析】

连接,交于,连,可得是二面角A﹣BD﹣A1的平面角,在直角三角形中可求得结果.【题目详解】连接,交于,连,如图所示:因为,且在底面内的射影是,所以由三垂线定理可得,所以是二面角A﹣BD﹣A1的平面角,设正方体的棱长为1,则,,所以,因为,所以.故答案为:.【题目点拨】本题考查了三垂线定理,考查了求二面角,关键是作出二面角的平面角,属于基础题.15、200【解题分析】

根据题意,由二项式定理可得,的通项公式为,令,求出对应的值即可求解.【题目详解】根据题意,由二项式定理可得,的通项公式为,当时,可得,当时,可得,所以多项式的展开式中,含的项为,故多项式的展开式中,含项的系数为.故答案为:【题目点拨】本题考查利用二项式定理求二项展开式中某项的系数;考查运算求解能力;熟练掌握二项展开式的通项公式是求解本题的关键;属于中档题、常考题型.16、0.4【解题分析】分析:先根据正态分布曲线得,再求,最后求.详解:根据正态分布曲线得,所以,所以0.5-0.1=0.4.故答案为:0.4.点睛:本题主要考查正态分布图,意在考查学生对该基础知识的掌握水平和数形结合的思想方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)或.【解题分析】

(1)直接消参得到曲线C1的普通方程,利用极坐标和直角坐标互化的公式求曲线C2的直角坐标方程;(2)把曲线C1的标准参数方程代入曲线C2的直角坐标方程利用直线参数方程t的几何意义解答.【题目详解】C1的参数方程为消参得普通方程为x-y-a+1=0,C2的极坐标方程为ρcos2θ+4cosθ-ρ=0,两边同乘ρ得ρ2cos2θ+4ρcosθ-ρ2=0,得y2=4x.所以曲线C2的直角坐标方程为y2=4x.(2)曲线C1的参数方程可转化为(t为参数,a∈R),代入曲线C2:y2=4x,得+1-4a=0,由Δ=,得a>0,设A,B对应的参数分别为t1,t2,由|PA|=2|PB|得|t1|=2|t2|,即t1=2t2或t1=-2t2,当t1=2t2时,解得a=;当t1=-2t2时,解得a=,综上,或.【题目点拨】本题主要考查参数方程、极坐标方程和直角坐标方程的互化,考查直线参数方程t的几何意义解题,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1);(2)【解题分析】

(1)当,可得直线的参数方程为,消掉参数,即可求得直线的普通方程,由的参数方程为,可得,根据即可求得答案;(2)将直线的参数方程,代入圆的方程得,根据韦达定理和直线参数的几何意义,即可求得答案;【题目详解】(1)直线的参数方程为,消掉参数可得直线的普通方程为,的参数方程为(为参数)可得曲线的普通方程为.(2)将直线的参数方程为(为参数)代入圆的方程得,易知,设所对应的参数分别为,则,,所以,当时,的最小值为.【题目点拨】本题考查了参数方程化为直角坐标方程和利用直线参数方程几何意义求弦长问题,解题关键是掌握根据直线的参数方程求弦长问题时,一般与韦达定理相结合,考查了分析能力和计算能力,属于中档题.19、(1).(2)【解题分析】

(1)利用判别式可求实数的取值范围,注意二次项系数的讨论.(2)就三种情况讨论函数的最值后可得实数的取值范围.【题目详解】解:(1)要使恒成立,若,显然;若,则有,,∴.(2)当时,显然恒成立;当时,该函数的对称轴是,在上是单调函数.当时,由于,要使在上恒成立,只要即可,即得,即;当时,由于函数在上恒成立,只要即可,此时显然成立.综上可知.【题目点拨】一元二次不等式的恒成立问题,可以转化为函数的最值进行讨论,必要时需要考虑对称轴的不同位置.20、(1)f(x)=lnx-2x-3;(2)f(x)的单调增区间为(0,1(3)(-∞,-2-e【解题分析】【试题分析】(1)借助导数的几何意义建立方程组求解;(2)先求导再借助导数与函数单调性之间的关系求解;(3)先将不等式进行等价转化,再分离参数借助导数知识求其最值,即可得到参数的范围。(1)由题意,得f'(x)=1则f'(1)=1+b,∵在点(1,f(1))处的切线方程为x+y+4=0,∴切线斜率为-1,则1+b=-1,得b=-2,将(1,f(1))代入方程x+y+4=0,得1+f(1)+4=0,解得f(1)=-5,∴f(1)=b-c=-5,将b=-2代入得c=3,故f(x)=ln(2)依题意知函数的定义域是(0,+∞),且f'(x)=1令f'(x)>0,得0<x<12,令f'(x)<0,得故f(x)的单调增区间为(0,12)(3)由f(x)≥2lnx+kx,得∴k≤-2-lnx+3x设g(x)=-2-lnx+3x令g'(x)=0,得x=e令g'(x)>0,得x>e-2,令g'(x)<0,得故g(x)在定义域内有极小值g(e∴g(x)的最小值为g(e所以k≤-2-e2,即k的取值范围为点睛:导数是研究函数的单调性、极值(最值)等方面的重要工具,本题的设置旨在考查导数在研究函数的单调性与极值(最值)中的运用。求解第一问时,直接借助题设与导数的几何意义建立方程求解;求解第二问时,依据题设条件,先求导法则及导数与函数的单调性之间的关系建立不等式探求;解答第三问时,先将不等式进行转化,再构造函数,运用导数的知识进行分析探求,从而使得问题简捷、巧妙获解。21、(1)见证明;(2)【解题分析】

(1)先由平面得到面PDC平面,可得平面,则有,再利用勾股

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论