2024届上海市浦东新区四校数学高二第二学期期末联考模拟试题含解析_第1页
2024届上海市浦东新区四校数学高二第二学期期末联考模拟试题含解析_第2页
2024届上海市浦东新区四校数学高二第二学期期末联考模拟试题含解析_第3页
2024届上海市浦东新区四校数学高二第二学期期末联考模拟试题含解析_第4页
2024届上海市浦东新区四校数学高二第二学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市浦东新区四校数学高二第二学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是()A.1 B.2 C. D.2.,则的值为()A.2B.-2C.8D.-83.b是区间上的随机数,直线与圆有公共点的概率为A. B. C. D.4.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102,根据上述规律,13+23+33+43+53+63=()A.192 B.202 C.212 D.2225.设,为两条不同的直线,,为两个不同的平面,则()A.若,,则 B.若,,则C.若,,则 D.若,,则6.已知随机变量,,则()A.0.16 B.0.32 C.0.66 D.0.687.某锥体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积最小值为()A. B. C.1 D.28.下面几种推理过程是演绎推理的是()A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B.由三角形的性质,推测空间四面体的性质C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D.在数列中,,可得,由此归纳出的通项公式9.已知随机变量X的分布列:02若,,则()A. B. C. D.10.设函数,若不等式恰有两个整数解,则实数的取值范围是()A. B.C. D.11.ΔABC的内角A、B、C的对边分别为a、b、c,已知,则()A. B. C. D.12.经过椭圆的一个焦点作倾斜角为的直线l,交椭圆于M,N两点,设O为坐标原点,则等于A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若函数,则不等式的解集为______________.14.某校为了解高二年级学生对教师教学的意见,打算从高二年级500名学生中用系统抽样的方法抽取50名进行调查,记500名学生的编号依次为1,2,…,500,若抽取的前两个号码为6,16,则抽取的最大号码为________.15.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份1234用水量4.5432.5由散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归直线方程是,则等于___16.设随机变量的概率分布列如下图,则___________.1234三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.(1)求直线的普通方程与曲线的直角坐标方程;(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.18.(12分)已知函数是奇函数.(1)求的值;(2)判断的单调性,并用定义加以证明;19.(12分)已知:已知函数(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线的斜率为﹣6,求实数a;(Ⅱ)若a=1,求f(x)的极值;20.(12分)已知函数.(1)求函数在点处的切线方程.(2)若对任意的恒成立,求实数的取值范围.21.(12分)已知是抛物线上一点,为的焦点.(1)若,是上的两点,证明:,,依次成等比数列.(2)若直线与交于,两点,且,求线段的垂直平分线在轴上的截距.22.(10分)已知函数,,若在处与直线相切.(1)求的值;(2)求在上的极值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

试题分析:由于垂直,不妨设,,,则,,表示到原点的距离,表示圆心,为半径的圆,因此的最大值,故答案为C.考点:平面向量数量积的运算.2、D【解题分析】试题分析:,所以当时,;当时,,故考点:二项式定理3、C【解题分析】

利用圆心到直线的距离小于等半径可求出满足条件的b,最后根据几何概型的概率公式可求出所求.【题目详解】解:b是区间上的随机数即,区间长度为,由直线与圆有公共点可得,,,区间长度为,直线与圆有公共点的概率,故选:C.【题目点拨】本题主要考查了直线与圆的位置关系,与长度有关的几何概型的求解.4、C【解题分析】∵所给等式左边的底数依次分别为1,2;1,2,3;1,2,3,4;

右边的底数依次分别为3,6,10,(注意:这里,),

∴由底数内在规律可知:第五个等式左边的底数为1,2,3,4,5,6,

右边的底数为,又左边为立方和,右边为平方的形式,

故有,故选C.点睛:本题考查了,所谓归纳推理,就是从个别性知识推出一般性结论的推理.它与演绎推理的思维进程不同.归纳推理的思维进程是从个别到一般,而演绎推理的思维进程不是从个别到一般,是一个必然地得出的思维进程.解答此类的方法是从特殊的前几个式子进行分析找出规律.观察前几个式子的变化规律,发现每一个等式左边为立方和,右边为平方的形式,且左边的底数在增加,右边的底数也在增加.从中找规律性即可.5、C【解题分析】

根据空间线面关系、面面关系及其平行、垂直的性质定理进行判断.【题目详解】对于A选项,若,,则与平行、相交、异面都可以,位置关系不确定;对于B选项,若,且,,,根据直线与平面平行的判定定理知,,,但与不平行;对于C选项,若,,在平面内可找到两条相交直线、使得,,于是可得出,,根据直线与平面垂直的判定定理可得;对于D选项,若,在平面内可找到一条直线与两平面的交线垂直,根据平面与平面垂直的性质定理得知,只有当时,才与平面垂直.故选C.【题目点拨】本题考查空间线面关系以及面面关系有关命题的判断,判断时要根据空间线面、面面平行与垂直的判定与性质定理来进行,考查逻辑推理能力,属于中等题.6、D【解题分析】

先由对称性求出,再利用即得解.【题目详解】由于随机变量,关于对称,故故选:D【题目点拨】本题考查了正态分布在给定区间的概率,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.7、B【解题分析】

锥体高一定,底面积最小时体积最小,底面图形可以是圆,等腰直角三角形,正方形,等腰直角三角形是面积最小,计算得到答案.【题目详解】锥体高一定,底面积最小时体积最小,底面图形可以是圆,等腰直角三角形,正方形,等腰直角三角形是面积最小故答案选B【题目点拨】本题考查了锥体的体积,判断底面是等腰直角三角形是解题的关键.8、C【解题分析】

推理分为合情推理(特殊→特殊或特殊→一般)与演绎推理(一般→特殊),其中合情推理包含类比推理与归纳推理,利用各概念进行判断可得正确答案.【题目详解】解:∵A中是从特殊→一般的推理,均属于归纳推理,是合情推理;B中,由平面三角形的性质,推测空间四面体的性质,是由特殊→特殊的推理,为类比推理,属于合情推理;C为三段论,是从一般→特殊的推理,是演绎推理;D为不完全归纳推理,属于合情推理.故选:C.【题目点拨】本题考查推理中的合情推理与演绎推理,注意理解其概念作出正确判断.9、B【解题分析】

由,可得,由随机变量分布列的期望、方差公式,联立即得解.【题目详解】由题意,且,又联立可得:故选:B【题目点拨】本题考查了随机变量分布列的期望和方差,考查了学生概念理解,数学运算的能力,属于中档题.10、D【解题分析】

求出函数的定义域、化简不等式,构造新函数,结合函数的图象,从而可得的范围,得到答案.【题目详解】由题意,函数的定义域为,不等式,即,即,两边除以,可得,又由直线恒过定点,若不等式恰有两个整数解,即函数图象有2个横坐标为整数的点落在直线的上方,由图象可知,这2个点为,可得,即,解得,即实数的取值范围是,故选D.【题目点拨】本题主要考查了函数的零点的综合应用,其中解答中把不等式的解,转化为函数的图象的关系,合理得出不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.11、D【解题分析】

边化角,再利用三角形内角和等于180°,全部换成B角,解出即可【题目详解】()【题目点拨】本题考查正弦定理解三角形,属于基础题.12、C【解题分析】

椭圆化标准方程为,求得,设直线方程为,代入椭圆方程,求得交点坐标,由向量坐标运算求得.【题目详解】椭圆方程为,,取一个焦点,则直线方程为,代入椭圆方程得,,所以,选C.【题目点拨】本题综合考查直线与椭圆相交问题,及向量坐标运算,由于本题坐标好求所以直接求坐标,代入向量坐标运算.一般如果不好求坐标点,都是用韦达定理设而不求.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

分类讨论,分别求解不等式,即可求得不等式的解集,得到答案.【题目详解】由题意,当时,令,解得,当时,令,解得,所以不等式的解集为.【题目点拨】本题主要考查了分段函数的应用,以及指数函数的图象与性质的应用,着重考查了推理与运算能力,属于基础题.14、496【解题分析】

通过系统抽样的特征,即可计算出最大编号.【题目详解】由于间距为,而前两个号码为6,16,则编号构成是以6为首项,10为公差的等差数列,因此最大编号为,故答案为496.【题目点拨】本题主要考查系统抽样的相关计算,难度不大.15、【解题分析】

首先求出x,y的平均数,根据样本中心点满足线性回归方程,把样本中心点代入,得到关于a的一元一次方程,解方程即可.【题目详解】:(1+2+3+4)=2.5,(4.5+4+3+2.5)=3.5,将(2.5,3.5)代入线性回归直线方程是0.7x+a,可得3.5=﹣1.75+a,故a=.故答案为【题目点拨】本题考查回归分析,考查样本中心点满足回归直线的方程,考查求一组数据的平均数,是基础题16、【解题分析】

依题意可知,根据分布列计算可得;【题目详解】解:依题意可得故答案为:【题目点拨】本题考查离散型随机变量的分布列与和概率公式的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解题分析】

(1)利用代入法消去参数可得到直线的普通方程,利用公式可得到曲线的直角坐标方程;(2)设直线的参数方程为(为参数),代入得,根据直线参数方程的几何意义,利用韦达定理可得结果.【题目详解】(1)由题意得点的直角坐标为,将点代入得则直线的普通方程为.由得,即.故曲线的直角坐标方程为.(2)设直线的参数方程为(为参数),代入得.设对应参数为,对应参数为.则,,且..【题目点拨】参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.18、(1);(2)在定义域上是减函数.证明见解析【解题分析】

(1)直接根据奇函数的性质f(0)=0,求出a,再进行验证;(2)先判断函数单调递减,再利用函数单调性的定义用作差比较法证明;【题目详解】(1)由题知的定义域为,因为是奇函数,所以,即解得.经验证可知是奇函数,所以.(2)在定义域上是减函数,由(1)知,,任取,且,所以.,,,即所以在定义域上是减函数.【题目点拨】本题主要考查了指数函数的图象与性质的综合应用,涉及函数的奇偶性,单调性,属于中档题.19、(1)-2;(2)极小值为,极大值为.【解题分析】分析:(1)求出曲线y=f(x)在点P(2,f(2))处的导数值等于切线的斜率为﹣6,即可求出;(2)通过a=1时,利用导函数为0,判断导数符号,即可求f(x)的极值.详解:(Ⅰ)因为f′(x)=﹣x2+x+2a,曲线y=f(x)在点P(2,f(2))处的切线的斜率k=f′(2)=2a﹣2,2a﹣2=﹣6,a=﹣2(Ⅱ)当a=1时,,f′(x)=﹣x2+x+2=﹣(x+1)(x﹣2)x(﹣∞,﹣1)﹣1(﹣1,2)2(2,+∞)f′(x)﹣0+0﹣f(x)单调减

单调增

单调减所以f(x)的极大值为,f(x)的极小值为.点睛:本题考查导数的综合应用,切线方程以及极值的求法,注意导函数的零点并不一定就是原函数的极值点.所以在求出导函数的零点后一定要注意分析这个零点是不是原函数的极值点.20、(1);(2)【解题分析】

(1)求出,然后算出和即可(2)由题意得,然后利用导数求出右边的最大值即可【题目详解】(1)切线方程为即(2)由题意令则只需,从而在上为增函数,在上为减函数.,实数的取值范围为【题目点拨】恒成立问题或存在性问题,通常是通过分离变量,转化为最值问题.21、(1)见解析;(2)【解题分析】

(1)由在抛物线上,求出抛物线方程;根据抛物线焦半径公式可得,,的长度,从而证得依次成等比数列;(2)将直线代入抛物线方程,消去,根据韦达定理求解出,从而可得中点坐标和垂直平分线斜率,从而求得垂直平分线所在直线方程,代入求得结果.【题目详解】(1)是抛物线上一点根据题意可得:,,,,依次成等比数列(2)由,消可得,设的中点,线段的垂直平分线的斜率为故

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论