数学建模:对计划生育的建议_第1页
数学建模:对计划生育的建议_第2页
数学建模:对计划生育的建议_第3页
数学建模:对计划生育的建议_第4页
数学建模:对计划生育的建议_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

全国大学生数学建模竞赛对计划生育的建议摘要本文在年龄和性别分布基本均匀,寿命为75岁的前提下,研究了人口增长分别与晚育、少生、时间间隔的关系。基于人口和性别比例均匀分布的前提下,忽略其它年龄段意外死亡的情况,自然死亡年龄为75岁,死亡率为1/75。要解决人口增长与晚育的关系,我建立宋健人口模型,引进了有关生育模式的函数,r>r1,此函数中取,由于增加n就意味着晚育,因此对于第一个问题我们以n为变量,然后固定了其它变量,再通过MATLAB编写程序得以解决人口增长与晚育的关系。对于第二个问题我们考虑育龄妇女一生只生一胎,一胎一个来解决。基于前两个问题,对于第三个问题,我们通过结果和图形的分析,可以很好的解决人口增长与时间间隔的关系。最后,应用前三个问题中我们假设的数据对20年后我国的人口数进行预测。得出当单位时间内平均每个育龄女性的生育数为0.2时,我国20年后人口总数为14.8653亿,达到控制在15亿内的要求。可见我们的假设具有一定的合理性。关键词:宋健人口模型生育模式人口增长一、问题的重述对计划生育的建议中国是一个人口大国,人口问题始终是制约我国发展的关键之一,影响我国人口增长率的因素有生育率、死亡率、迁移率和年龄结构等。现今我们假定现有人口13亿,年龄和性别分布基本均匀,寿命假定为75岁,考虑以下四个问题:问题(一),人口增长与晚育的关系;问题(二),人口增长与少生的关系;问题(三),人口增长与间隔时间的关系;问题(四),如果20年内人口增长控制在15亿以内,请你提出一个合理的计划生育的建议。二、问题的分析现在我们从宏观人口看,引起人口增长率变动的原因有三个基本因素,即出生率、死亡率和迁移率(在本题可看作迁出率等于迁入率)。依据这一基本出发点,就为人口增长率变动关系的数学模型提供了基本思路。由公式:人口自然增长率=(本年出生人数-本年死亡人数)/年平均人数×1000‰=人口出生率-人口死亡率可分别对问题(一)到(四)进行建模求解。面对以上四个问题我们在建立模型时,不可能全面考虑到影响人口增长率的种种因素,所以在建立以下数学模型中,我们将人口当作一个整体,当作一个系统来考虑,并将人口增长率的变化主要取决于生育率、死亡率的变化。针对问题(一),我们固定单位时间内平均每个育龄女性的生育数,男女性别比例,死亡率和人口的密度函数建立起宋健人口模型,对人口增长数量与晚育之间的关系进行解决。针对问题(二),我们以为变量,其他值固定,运用MATLAB编程建立少生概率模型,很好的解决了人口增长数量与少生之间的关系。针对问题(三),我们针对问题(四),我们将(单位时间内平均每个育龄女性的生育数)固定并假设中年人的死亡率为u(s)=0,生育人数定为一个常数.运用人口自然增长率公式进行建模解决问题。三、基本假设味着晚婚,而增加n意味着晚育。这样就求出在单位时间内人口增长数量和晚婚晚育之间的关系。即,晚婚晚育在一定程度上可控制人口的增长速度。把变量晚婚固定在18岁,此时只有一个变量为晚育n,利用(7)式,由人口总数乘以人口自然增长率得出人口增长数量。(人口增长数量=人口自然增长率人口总数)(4)、模型检验:=1\*GB3①、当取区间[18,50]时,用MATLAB编程,作出与育龄女性年龄的关系图,如图1所示,程序见附录1中的程序1。图1=2\*GB3②、把变量晚婚固定在18岁,用MATLAB得到晚育变量与人口增长数量之间的关系图:(程序见附录1中的程序2)图2(4)、结果分析:=1\*GB3①、,n取10,r1取18,可得=26,符合图1中,=26岁附近时,生育率最高。生育率高低与女性育龄年龄的关系如图1所示。=2\*GB3②、由图2可得,随着n的增加,人口增长率越来越小,人口增长数量越来越少。由此说明,育龄女性晚育可以降低我国的人口增长数量。具体结果见图2和附录中的程序2中的结果。(5)、模型评价:本模型运用了宋健的人口预测模型,模型中固定了,,,这几个函数值,大大的减低了模型的难度,但也因此模型的准确性不是很高。利用MATLAB编程,得到了与育龄女性年龄的关系图和人口增长率与育龄女性从什么时候开始生育之间的关系图,并在题设的条件下,得到了最高生育率所对应的女性年龄为26岁附近,基本上符合情况,解决了问题一的要求。当取这时有,可以看出,提高意味着晚婚,而增加n意味着晚育。这很符合我国的计划生育政策,我国正是通过这两种手段来实施的。2、针对问题(二),我们建立了模型二:(1)、模型的建立与求解:问题二中要解决的问题是人口增长数量与少生的关系,所以,为了模型的简便,我们此时n和其他值固定,把当作变量,运用MATLAB编程建立少生数量模型画出单位时间内人口增长数与少生的关系图形(图3):图3(2)、模型结果分析:图3中的横坐标表示(时刻t单位时间内平均每个育龄女性的生育数),纵坐标表示f1(人口增长数量)。可见在单位时间内f1随着的增加而增加。(3)、模型评价:本模型为一次线性模型,模型简单,解决问题明确,可由图3清晰的看出在单位时间内人口增长数量与少生之间的关系。因其它影响人口增长数量的变量被固定,模型在符合事实上的性能不高,却很好的反应出人口增长数量与少生之间的关系。3、针对问题(三),我们建立了模型三:人口增长与时间间隔的关系:这个题目是前两个问题的延伸,我们假设每对夫妻一生只生两个孩子,间隔为4年,这与第一题中取=2、n=4差不了多少,我们知道当固定,人口增长率会随着晚育(n)的增加而减少,也就是说人口增长也随着减少,同理,我们也可以知道人口增长跟时间间隔成反比关系,时间间隔越长,人口增长就越慢。4、针对问题(四),我们建立了模型四:(1)、模型的基本假设:=1\*GB3①、固定…………………单位时间内平均每个育龄女性的生育数固定=2\*GB3②、假设中年人的死亡率为u(s)=0,生育人数定为一个常数.(2)、模型的建立和求解:我们假设中年人的死亡率为0,即生育人数定为一个常数,则对来说只要固定,就是一个常数,我们取=0.3(即单位时间内平均每个育龄女性的生育数位0.3),所以=0.026.因为每人的寿命都是75岁,所以每年都有13/75亿人死亡,也就是说20年总的死亡人数为2013/75。而20年出生的总人数为1321.7215,所以20年后的人数为:21.7215-3.4667=18.2548,要想控制在15亿以内,我们可以采取降低的值,当我们取=0.2时,20年后的人数为:14.8653.(3)、模型评价:本模型通过控制单位时间内平均每个育龄女性的生育数来实现对人口增长率的控制(当然我们也可以从晚婚晚育和多胎之间的时间间隔方面来实现人口的控制)。当单位时间内平均每个育龄女性的生育数为0.2时,我国20年后人口总数为14.8653亿,达到控制在15亿内的要求。六、模型的综合评价1、模型优点:该模型考虑了诸多因素,对人口控制模型进行了详尽的描述,因此对人口的控制模型也很精细。在中长期内可以对每个影响因素进行调解,对人口的增长数量进行控制,使人口数量在一定的增长率进行增长或减少。所以说,对于人口的控制,该模型是相当准确的。2、模型缺点:在模型中我们只考虑到生育率和死亡率对人口增长率的影响,忽略了其它因素的影响,比如说迁移率和年龄结构等的影响。因此结果有一定的误差。3、模型的改进和推广:(1)、为了考虑多因素对人口增长率有什么影响,模型的改进必须将迁移率和年龄结构等影响因素考虑在内。(2)本模型是连续模型,我们可以通过改进,建立出离散模型,就可以更加科学的对我国人口增长数量进行控制。(3)、在模型中我们将未来的死亡率设为一个常数1/75,这实际上是不可能的。因此,对于死亡率,可以运用线形函数逼近法,将死亡函数分段线形来逼近。一般将死亡函数的曲线分为三段,公式如下:(4)、模型可运用于一些局部人口年龄分布比较均匀的地方,也可用来长期人口数量的控制以及人口的预测。七、给计划生育部的建议1、给计划生育部的建议:(1)、晚婚晚育,少生,两胎间的时间间隔,都可以影响到婴儿的出生率,所以我们要从中搭配寻找出最优的计划生育政策。(2)影响我国人口过增长数量的因素有很多,计划生育部应当综合考虑然后制定出更优的计划生育政策。(3)、在各个因素允许的条件下,国家可以放松生育政策,使我国人口结构分布更科学,让我国的人口缓慢地、安稳地降下来!(4)、逐步提高计划生育奖励标准。各级财政部门在财力许可的情况下,要提高对计划生育独生子女家庭、双女绝育家庭等的奖励标准。(5)、加强宣传教育,努力建设性别平等的社会环境。(6)、调整年龄结构。在维持计划生育预定人口数量不变的情况下,可以通过适时提高劳动年龄上限的办法来调整年龄结构,使劳动年龄人口比和老年抚养比保持在有利于可持续发展的水平上。八、参考文献[1]宋健,田雪原,于景元,李广元,人口预测和人口控制,北京:人民出版社,1981.[2]姜启源,谢金星,叶俊,数学模型,北京:高等教育出版社,1993.[3]谢云荪,张志让,数学实验,北京:科学出版社,1999.[4]韩明,王家宝,李林,数学实验,同济大学出版社,2009。九、附录附录1:程序1:(与育龄女性年龄的关系)symsxtrr1Hnyn=10;a=n/2;r1=18;x=0:0.1:40;T=exp(-x).*x.^(a-1);formatlong;T1=trapz(x,T)r=18:1:40;H=(r-r1).^(n./2-1).*exp(-(r-r1)./2)./2.^(n./2)./T1plot(r,H)程序2:(人口增长数与晚育的关系)%人口增长数与晚育的关系:forn=10:0.5:30a=n/2;x=0:0.1:50;T=exp(-x).*x.^(a-1);formatlong;T1=trapz(x,T);r=18+n-2;H=(r-18).^(n./2-1).*exp(-(r-18)./2)./2.^(n./2)./T1;symsrhKK=@(r)(r-18).^(n./2-1).*exp(-(r-18)./2)./2.^(n./2)./T1;formatlong;h=quadl(K,18,50);f=0.3*1*13/75*h*0.5-1/75;f1=13*f;plot(n,f1,'r*')holdonend程序3:(%人口增长与少生B的关系,此时固定n)symsxtrr1HnyKhn=10;a=n/2;forr1=18:1:27x=0:0.1:50;T=exp(-x).*x.^(a-1);formatlong;T1=trapz(x,T);forr=r1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论