




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州一中学2023年数学九年级第一学期期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为()A.144° B.132° C.126° D.108°2.一块圆形宣传标志牌如图所示,点,,在上,垂直平分于点,现测得,,则圆形标志牌的半径为()A. B. C. D.3.如图,在半径为的中,弦与交于点,,,则的长是()A. B. C. D.4.抛物线的顶点在()A.x轴上 B.y轴上 C.第三象限 D.第四象限5.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=()A. B. C. D.6.如图,在4×4的正方形方格中,和的顶点都在边长为1的小正方形的格点上,则的值为()A. B. C. D.37.如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是A.7 B.8 C.9 D.108.在ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径画圆,则点C与⊙A的位置关系是()A.在⊙A外 B.在⊙A上 C.在⊙A内 D.不能确定9.若关于x的一元二次方程x2+2x﹣m=0的一个根是x=1,则m的值是()A.1 B.2 C.3 D.410.如图,在平面直角坐标系xOy中,点A为(0,3),点B为(2,1),点C为(2,-3).则经画图操作可知:△ABC的外心坐标应是()A. B. C. D.二、填空题(每小题3分,共24分)11.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.12.关于x的方程的根为______.13.如图,矩形中,,点是边上一点,交于点,则长的取值范围是____.14.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有________种15.如图,直线a//b//c,点B是线段AC的中点,若DE=2,则DF的长度为_________.16.如图,⊙O是△ABC的外接圆,∠A=30°,BC=4,则⊙O的直径为___.17.圆锥的侧面展开图的圆心角是120°,其底面圆的半径为2cm,则其侧面积为_____.18.分式方程的解是__________.三、解答题(共66分)19.(10分)如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),顶点为D.(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.20.(6分)如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM的延长线交于点P,交AN于Q,直接写出AQ、AP的长.21.(6分)某企业为了解饮料自动售卖机的销售情况,对甲、乙两个城市的饮料自动售卖机进行抽样调查,从两个城市中所有的饮料自动售卖机中分别抽取16台,记录下某一天各自的销售情况(单位:元)如下:甲:25、45、2、22、10、28、61、18、2、45、78、45、58、32、16、78乙:48、52、21、25、33、12、42、1、41、42、33、44、33、18、68、72整理、描述数据:对销售金额进行分组,各组的频数如下:销传金额甲3643乙26ab分析数据:两组样本数据的平均数、中位数如下表所示:城市中位数平均数众数甲C1.845乙402.9d请根据以上信息,回答下列问题:(1)填空:a=,b=,c=,d=.(2)两个城市目前共有饮料自动售卖机4000台,估计日销售金额不低于40元的数量约为多少台?(3)根据以上数据,你认为甲、乙哪个城市的饮料自动售卖机销售情况较好?请说明理由(一条理由即可).22.(8分)感知定义在一次数学活动课中,老师给出这样一个新定义:如果三角形的两个内角α与β满足α+2β=90°,那么我们称这样的三角形为“类直角三角形”.尝试运用(1)如图1,在Rt△ABC中,∠C=90°,BC=3,AB=5,BD是∠ABC的平分线.①证明△ABD是“类直角三角形”;②试问在边AC上是否存在点E(异于点D),使得△ABE也是“类直角三角形”?若存在,请求出CE的长;若不存在,请说明理由.类比拓展(2)如图2,△ABD内接于⊙O,直径AB=10,弦AD=6,点E是弧AD上一动点(包括端点A,D),延长BE至点C,连结AC,且∠CAD=∠AOD,当△ABC是“类直角三角形”时,求AC的长.23.(8分)如图,△OAP是等腰直角三角形,∠OAP=90°,点A在第四象限,点P坐标为(8,0),抛物线y=ax2+bx+c经过原点O和A、P两点.(1)求抛物线的函数关系式.(2)点B是y轴正半轴上一点,连接AB,过点B作AB的垂线交抛物线于C、D两点,且BC=AB,求点B坐标;(3)在(2)的条件下,点M是线段BC上一点,过点M作x轴的垂线交抛物线于点N,求△CBN面积的最大值.24.(8分)如图示,在平面直角坐标系中,二次函数()交轴于,,在轴上有一点,连接.(1)求二次函数的表达式;(2)点是第二象限内的点抛物线上一动点①求面积最大值并写出此时点的坐标;②若,求此时点坐标;(3)连接,点是线段上的动点.连接,把线段绕着点顺时针旋转至,点是点的对应点.当动点从点运动到点,则动点所经过的路径长等于______(直接写出答案)25.(10分)如图,二次函数y=(x﹣2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b≥(x﹣2)2+m的x的取值范围.26.(10分)如果一个直角三角形的两条直角边的长相差2cm,面积是24,那么这个三角形的两条直角边分别是多少?
参考答案一、选择题(每小题3分,共30分)1、A【分析】利用圆的周长公式求得该弧的长度,然后由弧长公式进行计算.【详解】解:依题意得2π×2=,解得n=1.故选:A.【点睛】本题考查了弧长的计算.此题的已知条件是半径为2的圆的周长=半径为5的弧的弧长.2、B【分析】连结,,设半径为r,根据垂径定理得,在中,由勾股定理建立方程,解之即可求得答案.【详解】连结,,如图,设半径为,∵,,∴,点、、三点共线,∵,∴,在中,∵,,即,解得,故选B.【点睛】本题考查勾股定理,关键是利用垂径定理解答.3、C【分析】过点作于点,于,连接,由垂径定理得出,得出,由勾股定理得出,证出是等腰直角三角形,得出,求出,由直角三角形的性质得出,由勾股定理得出,即可得出答案.【详解】解:过点作于点,于,连接,如图所示:则,∴,在中,,∴,∴是等腰直角三角形,∴,,∵,∴,∴,在中,,∴;故选C.【点睛】考核知识点:垂径定理.利用垂径定理和勾股定理解决问题是关键.4、B【分析】将解析式化为顶点式即可得到答案.【详解】=2(x+0)²-4得:对称轴为y轴,则顶点坐标为(0,-4),在y轴上,故选B.5、B【详解】解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120º可得∠ADE=∠BFD,又因∠A=∠B=60º,根据两角对应相等的两三角形相似可得△AED∽△BDF所以,设AD=a,BD=2a,AB=BC=CA=3a,再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,所以整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,,即故选B.【点睛】本题考查相似三角形的判定及性质.6、B【分析】根据勾股定理求出和的各边长,由三边对应成比例的两个三角形相似可得,所以可得,求值即可.【详解】解:由勾股定理,得,,,,,,,,,,.故选:B【点睛】本题考查了相似三角形的判定与性质及解直角三角形,灵活利用正方形方格的特点是解题的关键.7、B【解析】解:∵个正六边形的一边恰在另一个正六边形的对角线上,∴它的一半是60°,它的邻补角也是60°,∴上面的小三角形是等边三角形,∴上面的(阴影部分)外轮廓线的两小段和为1,同理可知下面的(阴影部分)外轮廓线的两小段和为1,故这个图形(阴影部分)外轮廓线的周长是1.故选B.8、B【分析】根据勾股定理求出AC的值,根据点与圆的位关系特点,判断即可.【详解】解:由勾股定理得:∵AC=半径=3,∴点C与⊙A的位置关系是:点C在⊙A上,故选:B.【点睛】本题考查了点与圆的位置关系定理和勾股定理等知识点的应用,点与圆(圆的半径是r,点到圆心的距离是d)的位置关系有3种:d=r时,点在圆上;d<r点在圆内;d>r点在圆外.掌握以上知识是解题的关键.9、C【分析】根据一元二次方程的解的定义,把x=1代入方程得1+2﹣m=0,然后解关于m的一次方程即可.【详解】解:把x=1代入x2+2x﹣m=0得1+2﹣m=0,解得m=1.故选:C.【点睛】本题考查一元二次的代入求参数,关键在于掌握基本运算方法.10、C【解析】外心在BC的垂直平分线上,则外心纵坐标为-1.故选C.二、填空题(每小题3分,共24分)11、【分析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=.故其概率为:.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.12、x1=0,x2=【分析】直接由因式分解法方程,即可得到答案.【详解】解:∵,∴或,∴,;故答案为:,.【点睛】本题考查了解一元二次方程,解题的关键是熟练掌握因式分解法解方程.13、【分析】证明,利用相似比列出关于AD,DE,EC,CF的关系式,从而求出长的取值范围.【详解】∵∴∴∵四边形是矩形∴∴∴∴∴∴因为∴故答案为:.【点睛】本题考查了一元二次方程的最值问题,掌握相似三角形的性质以及判定、解一元二次方程得方法是解题的关键.14、1.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】解:由题意:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ADO≌△CBO,进而得到AD=CB,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;
∴有1种可能使四边形ABCD为平行四边形.故答案是1.【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.15、1【分析】根据平行线分线段成比例的性质可得,从而计算出EF的值,即可得到DF的值.【详解】解:∵直线a∥b∥c,点B是线段AC的中点,DE=2,
∴,即,
∴=,
∴EF=2,∵DE=2∴DF=DE+EF=2+2=1
故答案为:1.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.16、1【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为1.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为1,故答案为:1.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.17、12πcm【分析】先根据底面半径求出底面周长,即为扇形的弧长,再设出扇形的半径,根据扇形的弧长公式,确定扇形的半径;最后用扇形的面积公式求解即可.【详解】解:∵底面圆的半径为2cm,∴底面周长为4πcm,∴侧面展开扇形的弧长为4πcm,设扇形的半径为r,∵圆锥的侧面展开图的圆心角是120°,∴=4π,解得:r=6,∴侧面积为×4π×6=12πcm,故答案为:12πcm.【点睛】本题考查了圆锥的表面积、扇形的面积以及弧长公式,解答的关键在于对基础知识的牢固掌握和灵活运用.18、【分析】等式两边同时乘以,再移项即可求解.【详解】等式两边同时乘以得:移项得:,经检验,x=2是方程的解.故答案为:.【点睛】本题考查了解分式方程的问题,掌握解分式方程的方法是解题的关键.三、解答题(共66分)19、(1);(2);(3).【分析】将A,B,C点的坐标代入解析式,用待定系数法可得函数解析式;(2)求出顶点D的坐标为,作B点关于直线的对称点,可求出直线的函数关系式为,当在直线上时,的值最小;(3)作轴交AC于E点,求得AC的解析式为,设,,得,所以,,求函数的最大值即可.【详解】将A,B,C点的坐标代入解析式,得方程组:解得抛物线的解析式为配方,得,顶点D的坐标为作B点关于直线的对称点,如图1,则,由得,可求出直线的函数关系式为,当在直线上时,的值最小,则.作轴交AC于E点,如图2,AC的解析式为,设,,,当时,的面积的最大值是;【点睛】本题考核知识点:二次函数综合运用.解题关键点:画出图形,数形结合分析问题,把问题转化为相应函数问题解决.20、(1)BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由见解析;(3)AP=AM+PM=3.【分析】(1)在MB的延长线上,截取BE=DN,连接AE,则可证明△ABE≌△ADN,得到AE=AN,进一步证明△AEM≌△ANM,得出ME=MN,得出BM+DN=MN;
(2)在DC上截取DF=BM,连接AF,可先证明△ABM≌△ADF,得出AM=AF,进一步证明△MAN≌△FAN,可得到MN=NF,从而可得到DN-BM=MN;
(3)由已知得出DN=12,由勾股定理得出AN===6,由平行线得出△ABQ∽△NDQ,得出====,∴=,求出AQ=2;由(2)得出DN-BM=MN.设BM=x,则MN=12-x,CM=6+x,在Rt△CMN中,由勾股定理得出方程,解方程得出BM=2,由勾股定理得出AM==,由平行线得出△PBM∽△PDA,得出==,,求出PM=PM=AM=,得出AP=AM+PM=3.【详解】(1)BM+DN=MN,理由如下:如图1,在MB的延长线上,截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由如下:如图2,在DC上截取DF=BM,连接AF,则∠ABM=90°=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BAD=90°,∵∠MAN=45°,∴∠MAN=∠FAN=45°,在△MAN和△FAN中,,∴△MAN≌△FAN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四边形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN===6,∵AB∥CD,∴△ABQ∽△NDQ,∴====,∴=,∴AQ=AN=2;由(2)得:DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM===2,∵BC∥AD,∴△PBM∽△PDA,∴===,∴PM=AM=,∴AP=AM+PM=3.【点睛】本题是四边形的综合题目,考查了正方形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定与性质等知识;本题综合性强,证明三角形全等和三角形相似是解题的关键.21、(1)6,2,2,33(2)1875(3)见解析(答案不唯一)【分析】(1)根据某一天各自的销售情况求出的值,根据中位数的定义求出的值,根据众数的定义求出的值.(2)用样本估算整体的方法去计算即可.(3)根据平均数、众数、中位数的性质判断即可.【详解】(1).(2)(台)故估计日销售金额不低于40元的数量约为1875台.(3)可以推断出甲城市的饮料自动售货机销售情况较好,理由如下:①甲城市饮料自动售货机销售金额的平均数较高,表示甲城市的销售情况较好;②甲城市饮料自动售货机销售金额的众数较高,表示甲城市的销售金额较高;可以推断出乙城市的饮料自动售货机销售情况较好,理由如下:①乙城市饮料自动售货机销售金额的中位数较高,表示乙城市销售金额高的自动售货机数量较多;【点睛】本题考查了概率统计的问题,掌握平均数、众数、中位数的性质、样本估算整体的方法是解题的关键.22、(1)①证明见解析;②CE=;(2)当△ABC是“类直角三角形”时,AC的长为或.【分析】(1)①证明∠A+2∠ABD=90°即可解决问题.②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”,证明△ABC∽△BEC,可得,由此构建方程即可解决问题.(2)分两种情形:①如图2中,当∠ABC+2∠C=90°时,作点D关于直线AB的对称点F,连接FA,FB.则点F在⊙O上,且∠DBF=∠DOA.②如图3中,由①可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分∠FBC,可证∠C+2∠ABC=90°,利用相似三角形的性质构建方程即可解决问题.【详解】(1)①证明:如图1中,∵BD是∠ABC的角平分线,∴∠ABC=2∠ABD,∵∠C=90°,∴∠A+∠ABC=90°,∴∠A+2∠ABD=90°,∴△ABD为“类直角三角形”;②如图1中,假设在AC边设上存在点E(异于点D),使得△ABE是“类直角三角形”,在Rt△ABC中,∵AB=5,BC=3,∴AC=,∵∠AEB=∠C+∠EBC>90°,∴∠ABE+2∠A=90°,∵∠ABE+∠A+∠CBE=90°,∴∠A=∠CBE,∴△ABC∽△BEC,∴,∴CE=,(2)∵AB是直径,∴∠ADB=90°,∵AD=6,AB=10,∴BD=,①如图2中,当∠ABC+2∠C=90°时,作点D关于直线AB的对称点F,连接FA,FB,则点F在⊙O上,且∠DBF=∠DOA,∵∠DBF+∠DAF=180°,且∠CAD=∠AOD,∴∠CAD+∠DAF=180°,∴C,A,F共线,∵∠C+∠ABC+∠ABF=90°,∴∠C=∠ABF,∴△FAB∽△FBC,∴,即,∴AC=.②如图3中,由①可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分∠FBC,∴∠C+2∠ABC=90°,∵∠CAD=∠CBF,∠C=∠C,∴△DAC∽△FBC,∴,即,∴CD=(AC+6),在Rt△ADC中,[(ac+6)]2+62=AC2,∴AC=或﹣6(舍弃),综上所述,当△ABC是“类直角三角形”时,AC的长为或.【点睛】本题主要考查圆综合题,考查了相似三角形的判定和性质,“类直角三角形”的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.23、(1);(2);(3).【分析】(1)先根据是等腰直角三角形,和点P的坐标求出点A的坐标,再利用待定系数法即可求得;(2)设点,如图(见解析),过点C作CH垂直y轴于点H,过点A作AQ垂直y轴于点Q,易证明,可得,则点C坐标为,将其代入题(1)中的抛物线函数关系式即可得;(3)如图,延长NM交CH于点E,则,先通过点B、C求出直线BC的函数关系式,因点N在抛物线上,则设,则可得点M的坐标,再根据三角形的面积公式列出等式,利用二次函数的性质求最值即可.【详解】(1)是等腰直角三角形,,点P坐标为则点A的坐标为将点O、A、B三点坐标代入抛物线的函数关系式得:,解得:故抛物线的函数关系式为:;(2)设点,过点C作CH垂直y轴于点H,过点A作AQ垂直y轴于点Q,又故点C的坐标为将点C的坐标代入题(1)的抛物线函数关系式得:,解得:故点B的坐标为;(3)如图,延长NM交CH于点E,则设直线BC的解析式为:,将点,点代入得:解得:则直线BC的解析式为:因点N在抛物线上,设,则点M的坐标为的面积即整理得:又因点M是线段BC上一点,则由二次函数的性质得:当时,y随x的增大而增大;当时,y随x的增大而减小故当时,取得最大值.【点睛】本题是一道较好的综合题,考查了待定系数法求二次函数的解析式、三角形全等的判定定理与性质、二次函数图象的性质,熟练掌握并灵活运用这些知识点是解题关键.24、(1);(2)①,点坐标为;②;(3)【分析】(1)根据点坐标代入解析式即可得解;(2)①由A、E两点坐标得出直线AE解析式,设点坐标为,过点作轴交于点,则坐标为,然后构建面积与t的二次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电子测量技术在建筑智能化中的应用考核试卷
- 搬运设备智能调度与路径规划考核试卷
- 电力仪表的数字技术创新与应用考核试卷
- 石棉在水利工程和港口建设中的应用考核试卷
- 皮革服装行业法律法规与标准解读考核试卷
- 电子元器件在移动医疗设备中的应用考核试卷
- 照明项目实践指导考核试卷
- 环境污染治理与区域环境质量改善考核试卷
- 购物中心运营现场管理
- 2025知识产权许可协议样本:技术秘密转让合同
- 交警道路交通安全执法规范化-课件
- 电焊工基础知识培训-课件
- 上海中学自招真题解析
- 中国古典诗歌的多义性
- 《钢铁是怎样炼成的》知识竞赛课件讲义
- 济青高速涵洞定期检查报告模版
- 高考写作指导:作文训练之语言的提升
- 弱电安装安全安全技术交底
- Commvault数据库备份恢复功能介绍
- SJG 05-2020 基坑支护技术标准-高清现行
- 部编版语文一年级下册第一单元教材分析及教学建议
评论
0/150
提交评论