2024届甘肃省临夏州临夏中学高二数学第二学期期末联考试题含解析_第1页
2024届甘肃省临夏州临夏中学高二数学第二学期期末联考试题含解析_第2页
2024届甘肃省临夏州临夏中学高二数学第二学期期末联考试题含解析_第3页
2024届甘肃省临夏州临夏中学高二数学第二学期期末联考试题含解析_第4页
2024届甘肃省临夏州临夏中学高二数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省临夏州临夏中学高二数学第二学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,命题“若”的否命题是A.若,则 B.若,则C.若,则 D.若,则2.设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足则p是q的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.直线的倾斜角的大小为()A. B. C. D.4.设是定义在上的偶函数,对,都有,且当时,,若在区间内关于的方程恰好有三个不同的实数根,则的取值范围是()A. B. C. D.5.已知三棱锥S-ABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为A.34B.C.74D.6.下列命题中真命题的个数是()①,;②若“”是假命题,则都是假命题;③若“,”的否定是“,”A.0 B.1 C.2 D.37.曲线和直线所围成图形的面积是()A.4 B.6 C.8 D.108.已知非空集合,全集,集合,集合则()A. B. C. D.9.过点作曲线的切线,则切线方程为()A. B.C. D.10.以为焦点的抛物线的标准方程是()A. B. C. D.11.干支纪年法是中国历法上自古以来就一直使用的纪年方法,主要方式是由十天干(甲、乙、丙、丁、戊、己、废、辛、壬、朵)和十二地支(子、丑、卯、辰、已、午、未、中、百、戊、)按顺序配对,周而复始,循环记录.如:1984年是甲子年,1985年是乙丑年,1994年是甲戌年,则数学王子高斯出生的1777年是干支纪年法中的()A.丁申年 B.丙寅年 C.丁酉年 D.戊辰年12.设,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知的顶点,分别为双曲线左、右焦点,顶点在双曲线上,则的值等于__________.14.用0,1,3,5,7这五个数字可以组成______个无重复数字的五位数.15.若圆锥的侧面积为,底面积为,则该圆锥的体积为____________.16.若,,与的夹角为,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,将的图象向右平移两个单位长度,得到函数的图象.(1)求函数的解析式;(2)若方程在上有且仅有一个实根,求的取值范围;(3)若函数与的图象关于直线对称,设,已知对任意的恒成立,求的取值范围.18.(12分)已知等比数列,的公比分别为,.(1)若,,求数列的前项和;(2)若数列,满足,求证:数列不是等比数列.19.(12分)如图,在圆心角为,半径为的扇形铁皮上截取一块矩形材料,其中点为圆心,点在圆弧上,点在两半径上,现将此矩形铁皮卷成一个以为母线的圆柱形铁皮罐的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱形铁皮罐的容积为.(1)求圆柱形铁皮罐的容积关于的函数解析式,并指出该函数的定义域;(2)当为何值时,才使做出的圆柱形铁皮罐的容积最大?最大容积是多少?(圆柱体积公式:,为圆柱的底面枳,为圆柱的高)20.(12分)已知椭圆的右顶点为,定点,直线与椭圆交于另一点.(Ⅰ)求椭圆的标准方程;(Ⅱ)试问是否存在过点的直线与椭圆交于两点,使得成立?若存在,请求出直线的方程;若不存在,请说明理由.21.(12分)已知函数有两个不同的零点,.(1)求的取值范围;(2)求证:.22.(10分)设函数,.(1)求函数的单调区间;(2)当时,若函数没有零点,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

根据否命题的定义:即否定条件又否定结论,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是“若a+b+c≠3,则a2+b2+c2<3”故选A2、A【解题分析】试题分析:画圆:(x–1)2+(y–1)2=2,如图所示,则(x–1)2+(y–1)2≤2表示圆及其内部,设该区域为M.画出表示的可行域,如图中阴影部分所示,设该区域为N.可知N在M内,则p是q的必要不充分条件.故选A.【考点】充要条件的判断,线性规划【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识相结合.本题的条件与结论可以转化为平面区域的关系,利用充分性、必要性和集合的包含关系得出结论.3、B【解题分析】

由直线方程,可知直线的斜率,设直线的倾斜角为,则,又,所以,故选.4、D【解题分析】由f(x−2)=f(x+2),可得函数的周期T=4,当x∈[−2,0]时,,∴可得(−2,6]的图象如下:从图可看出,要使f(x)的图象与y=loga(x+2)的图象恰有3个不同的交点,则需满足,求解不等式组可得的取值范围是.本题选择D选项.5、D【解题分析】略视频6、B【解题分析】若,,故命题①假;若“”是假命题,则至多有一个是真命题,故命题②是假命题;依据全称命题与特征命题的否定关系可得命题“”的否定是“”,即命题③是真命题,应选答案B.7、C【解题分析】分析:先根据题意画出区域,然后依据图形得到积分下限为0,积分上限为2,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.详解:曲线和直线的交点坐标为(0,0),(2,2),(-2,-2),根据题意画出图形,曲线和直线所围成图形的面积是.故选C.点睛:该题所考查的是求曲线围成图形的面积问题,在解题的过程中,首先正确的将对应的图形表示出来,之后应用定积分求得结果,正确求解积分区间是解题的关键.8、B【解题分析】分析:根据题意画出图形,找出与的并集,交集,判断与的关系即可详解:全集,集合,集合,,故选点睛:本题主要考查的是交集,并集,补集的混合运算,根据题目画出图形是解题的关键,属于基础题。9、C【解题分析】

设出切点坐标求出原函数的导函数,得到函数在时的导数值,即切线的斜率,然后由直线方程的点斜式得切线方程,代入已知点的坐标后求出切点的坐标,则切线方程可求.【题目详解】由,得,

设切点为

则,

∴切线方程为,

∵切线过点,

∴−ex0=ex0(1−x0),

解得:.

∴切线方程为,整理得:.故选C..【题目点拨】本题考查了利用导数研究过曲线上某点的切线方程,过曲线上某点处的切线的斜率,就是函数在该点处的导数值,是中档题.10、A【解题分析】

由题意和抛物线的性质判断出抛物线的开口方向,并求出的值,即可写出抛物线的标准方程.【题目详解】因为抛物线的焦点坐标是,

所以抛物线开口向右,且=2,

则抛物线的标准方程.

故选:A.【题目点拨】本题考查抛物线的标准方程以及性质,属于基础题.11、C【解题分析】

天干是以10为公差的等差数列,地支是以12为公差的等差数列,按照这个规律进行推理,即可得到结果.【题目详解】由题意,天干是以10为公差的等差数列,地支是以12为公差的等差数列,1994年是甲戌年,则1777的天干为丁,地支为酉,故选:C.【题目点拨】本题主要考查了等差数列的定义及等差数列的性质的应用,其中解答中认真审题,合理利用等差数列的定义,以及等差数列的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.12、C【解题分析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由题意得,,再利用正弦定理进行求解即可.【题目详解】解:由题意得,,.故答案为:.【题目点拨】本题考查双曲线的性质和应用,结合了正弦定理的应用,属于中档题.14、96【解题分析】

先排无重复数字的五位数的万位数,再排其余四个数位,运算即可得解.【题目详解】解:先排无重复数字的五位数的万位数,有4种选择,再排其余四位,有种选择,故无重复数字的五位数的个数为,故答案为:.【题目点拨】本题考查了排列组合中的特殊位置优先处理法,属基础题.15、【解题分析】试题分析:因为,圆锥的侧面积为,底面积为,所以,解得,,所以,该圆锥的体积为.考点:圆锥的几何特征点评:简单题,圆锥之中,要弄清r,h,l之间的关系,熟练掌握面积、体积计算公式.16、或【解题分析】

利用空间向量的数量积的坐标运算公式可求得,从而可求得的值.【题目详解】解:,,,,,又与的夹角为,,解得:或1.故答案为:或1【题目点拨】本题考查空间向量的数量积的坐标运算,熟练掌握空间向量的数量积的坐标运算公式是关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解题分析】【试题分析】(1)借助平移的知识可直接求得函数解析式;(2)先换元将问题进行等价转化为有且只有一个根,再构造二次函数运用函数方程思想建立不等式组分析求解;(3)先依据题设条件求出函数的解析式,再运用不等式恒成立求出函数的最小值:解:(1)(2)设,则,原方程可化为于是只须在上有且仅有一个实根,法1:设,对称轴t=,则①,或②由①得,即,由②得无解,,则.法2:由,得,,,设,则,,记,则在上是单调函数,因为故要使题设成立,只须,即,从而有(3)设的图像上一点,点关于的对称点为,由点在的图像上,所以,于是即..由,化简得,设,即恒成立.解法1:设,对称轴则③或④由③得,由④得或,即或综上,.解法2:注意到,分离参数得对任意恒成立设,,即可证在上单调递增18、(1);(2)证明见解析.【解题分析】

(1)分别求出,再得,仍然是等比数列,由等比数列前项和公式可得;(2)由已知,假设是等比数列,则,代入求得,与已知矛盾,假设错误.【题目详解】(1),,,则;证明:(2)假设数列是等比数列,可得,设数列的公比为,可得,因此有,即,因此有,与已知条件中不相等矛盾,因此假设不成立,故数列不是等比数列.【题目点拨】本题考查等比数列的通项公式,前项和公式,考查否定性命题的证明.证明否定性命题可用反证法,假设结论的反面成立,结合已知推理出矛盾的结论,说明假设错误.也可直接证明,即能说明不是等比数列.19、(1);(2),.【解题分析】分析:(1)先利用勾股定理可得OA,根据周长公式得半径,再根据圆柱体积公式求V(x),最后根据实际意义确定定义域,(2)先求导数,再求导函数零点,列表分析导函数符号变化规律,确定函数单调性,进而得函数最值.详解:(1)连接OB,在Rt△OAB中,由AB=x,利用勾股定理可得OA=,设圆柱底面半径为r,则=2πr,即4=3600-,所以V(x)=π=π··x=,即铁皮罐的容积为V(x)关于x的函数关系式为V(x)=,定义域为(0,60).(2)由V′(x)==0,x∈(0,60),得x=20.列表如下:x(0,20)20(20,60)V′(x)+0-V(x)↗极大值V(20)↘所以当x=20时,V(x)有极大值,也是最大值为.答:当x为20cm时,做出的圆柱形铁皮罐的容积最大,最大容积是.点睛:利用导数解答函数最值的一般步骤:第一步:利用或求单调区间;第二步:解得实根;第三步:比较实根同区间端点的大小;第四步:求极值;第五步:比较极值同端点值的大小.20、(Ⅰ);(Ⅱ)存在,或【解题分析】

(1)由已知可得,再将点代入椭圆方程,求出即可;(2)设,由已知可得,结合,可得,从而有,验证斜率不存在时是否满足条件,当斜率存在时,设其方程为,与椭圆方程联立,根据根与系数关系,得出关系式,结合,即可求解.【题目详解】(Ⅰ)由椭圆的右顶点为知,.把点坐标代入椭圆方程,得.解得.所以椭圆的标准方程为.(Ⅱ),所以.由,得,即,所以.设,,则,,所以.①当直线的斜率不存在时,直线的方程为,,这与矛盾.②当直线的斜率存在时,设直线的方程为.联立方程得.,.由可得,,即.整理得.解得.综上所述,存在满足条件的直线,其方程为或.【题目点拨】本题考查椭圆的标准方程、直线与椭圆的位置关系,要熟练应用根与系数关系设而不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论