




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届保定市重点中学数学高二第二学期期末达标测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数满足,其中为虚数单位,则A. B. C. D.2.已知复数z满足(3-4i)z=|4+3i|,则A.-4B.-C.4D.43.已知角的终边经过点,则()A. B. C. D.4.某快递公司共有人,从周一到周日的七天中,每天安排一人送货,每人至少送货天,其不同的排法共有()种.A. B. C. D.5.当函数y=x⋅2x取极小值时,A.1ln2 B.-1ln6.某次运动会中,主委会将甲、乙、丙、丁四名志愿者安排到三个不同比赛项目中担任服务工作,每个项目至少1人,若甲、乙两人不能到同一个项目,则不同的安排方式有()A.24种 B.30种 C.36种 D.72种7.函数在上单调递减,且是偶函数,若,则的取值范围是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)8.若复数满足,则在复平面内,对应的点的坐标是()A. B. C. D.9.已知、分别为的左、右焦点,是右支上的一点,与轴交于点,的内切圆在边上的切点为,若,则的离心率为()A. B. C. D.10.曲线对称的曲线的极坐标方程是()A. B. C. D.11.4名同学分别从6所大学中选择一所参观,则不同选法有()A.种 B.种 C.种 D.种12.一个球从100米高处自由落下,每次着地后又跳回到原高度的一半再落下,则右边程序框图输出的S表示的是()A.小球第10次着地时向下的运动共经过的路程B.小球第10次着地时一共经过的路程C.小球第11次着地时向下的运动共经过的路程D.小球第11次着地时一共经过的路程二、填空题:本题共4小题,每小题5分,共20分。13.设为的展开式中含项的系数,为的展开式中二项式系数的和,则能使成立的的最大值是________.14.如果不等式的解集为,那么_______.15.已知是以为直径的半圆弧上的动点,为圆心,为中点,若,则__________.16.已知向量的夹角为,且,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验,某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月的市场占有率进行了统计,结果如表:月份月份代码x123456y111316152021请用相关系数说明能否用线性回归模型拟合y与月份代码x之间的关系,如果能,请计算出y关于x的线性回归方程,并预测该公司2018年12月的市场占有率如果不能,请说明理由.根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元辆和800元辆的A,B两款车型,报废年限各不相同考虑公司的经济效益,该公司决定对两款单车进行科学模拟测试,得到两款单车使用寿命频数表如表:报废年限车型1年2年3年4年总计A10304020100测算,平均每辆单车每年可以为公司带来收入500元不考虑除采购成本以外的其他成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,分别以这100辆单车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择釆购哪款车型?参考数据:,,参考公式:相关系数回归直线方程中的斜率和截距的最小二乘估计公式分别为:,.18.(12分)已知是抛物线的焦点,是抛物线上一点,且.(1)求抛物线的方程;(2)直线与抛物线交于两点,若(为坐标原点),则直线是否会过某个定点?若是,求出该定点坐标,若不是,说明理由.19.(12分)在中,角的对边分别为,满足.(1)求角的大小(2)若,求的周长最大值.20.(12分)为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛.从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,,,,,,到如图所示的频率分布直方图.(1)求图中的值及样本的中位数与众数;(2)若从竞赛成绩在与两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率.(3)为了激励同学们的学习热情,现评出一二三等奖,得分在内的为一等奖,得分在内的为二等奖,得分在内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设为获得三等奖的人数,求的分布列与数学期望.21.(12分)已知.为锐角,,.(1)求的值;(2)求的值.22.(10分)已知圆C的圆心在x轴上,且经过两点,.(1)求圆C的方程;(2)若点P在圆C上,求点P到直线的距离的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
由复数的除法运算法则化简,由此可得到复数【题目详解】由题可得;;故答案选B【题目点拨】本题主要考查复数的除法运算法则,属于基础题。2、D【解题分析】试题解析:设z=a+bi(3-4i)z=(3-4i)(a+bi)=3a+4b+(3b-4a)i|4+3i|=∴3a+4b=53b-4a=0,解得考点:本题考查复数运算及复数的概念点评:解决本题的关键是正确计算复数,要掌握复数的相关概念3、B【解题分析】
根据角的终边上一点的坐标,求得的值,对所求表达式分子分母同时除以,转化为只含的形式,由此求得表达式的值.【题目详解】依题意可知,.故选B.【题目点拨】本小题主要考查三角函数的定义,考查齐次方程的计算,属于基础题.4、C【解题分析】分析:把天分成天组,然后人各选一组值班即可.详解:天分成天,天,天组,人各选一组值班,共有种,故选C.点睛:本题主要考查分组与分配问题问题,着重考查分步乘法计数原理,意在考查综合运用所学知识解决实际问题的能力,属于中档题.5、B【解题分析】分析:对函数求导,由y'=2x详解:y'=即1+xln2=0,x=-点睛:本题考查利用导数研究函数的极值问题,属于基础题6、B【解题分析】
首先对甲、乙、丙、丁进行分组,减去甲、乙两人在同一个项目一种情况,然后进行3个地方的全排列即可得到答案.【题目详解】先将甲、乙、丙、丁分成三组(每组至少一人)人数分配是1,1,2共有种情况,又甲、乙两人不能到同一个项目,故只有5种分组情况,然后分配到三个不同地方,所以不同的安排方式有种,故答案选B.【题目点拨】本题主要考查排列组合的相关计算,意在考查学生的分析能力,逻辑推理能力和计算能力,难度不大.7、B【解题分析】
根据题意分析的图像关于直线对称,即可得到的单调区间,利用对称性以及单调性即可得到的取值范围。【题目详解】根据题意,函数满足是偶函数,则函数的图像关于直线对称,若函数在上单调递减,则在上递增,所以要使,则有,变形可得,解可得:或,即的取值范围为;故选:B.【题目点拨】本题考查偶函数的性质,以及函数单调性的应用,有一定综合性,属于中档题。8、C【解题分析】试题分析:由,可得,∴z对应的点的坐标为(4,-2),故选C.考点:考查了复数的运算和复数与复平面内点的对应关系.点评:解本题的关键是根据复数的除法运算求出复数z,然后利用复数z所对应的点的横坐标和纵坐标分别为为复数的实部和虚部,得出对应点的坐标.9、A【解题分析】
由中垂线的性质得出,利用圆的切线长定理结合双曲线的定义得出,可得出的值,再结合的值可求出双曲线的离心率的值.【题目详解】如图所示,由题意,,由双曲线定义得,由圆的切线长定理可得,所以,,,即,所以,双曲线的离心率,故选:A.【题目点拨】本题考查双曲线离心率的求解,同时也考查了双曲线的定义以及圆的切线长定理的应用,解题时要分析出几何图形的特征,在出现焦点时,一般要结合双曲线的定义来求解,考查分析问题和解决问题的能力,属于中等题.10、A【解题分析】
先把两曲线极坐标方程化为普通方程,求得对称曲线,再转化为极坐标方程。【题目详解】化为标准方程可知曲线为,曲线为,所以对称直线为,化为极坐标方程为,选A.【题目点拨】由直角坐标与极坐标互换公式,利用这个公式可以实现直角坐标与极坐标的相互转化。11、B【解题分析】
每名同学从6个大学点中选择一个参观,每个同学都有6种选择,根据乘法原理,计算即可得答案.【题目详解】因为每名同学都有6种选择,相互不影响,所以有种选法.故选:B.【题目点拨】本题考查分步计数原理的运用,注意学生选择的景区可以重复.属于基础题.12、C【解题分析】结合题意阅读流程图可知,每次循环记录一次向下运动经过的路程,上下的路程相等,则表示小球第11次着地时向下的运动共经过的路程.本题选择C选项.二、填空题:本题共4小题,每小题5分,共20分。13、4【解题分析】
由题意可得,An==,,若使得An≥Bn,即n(n+1)≥2n,可求.【题目详解】∵(1+x)n+1的展开式的通项为Tr+1,由题意可得,An==,又∵为的展开式中二项式系数的和,∴,∵An≥Bn,∴,即n(n+1)≥2n当n=1时,1×2≥2,满足题意;当n=2时,2×3≥22,满足题意;当n=3时,3×4≥23,满足题意;当n=4时,4×5≥24,满足题意;当n=5时,5×6<25,不满足题意,且由于指数函数比二次函数增加的快,故当n≥5时,n(n+1)<2n,∴=4.故答案为4【题目点拨】本题主要考查了二项展开式的通项公式的应用,二项展开式的性质应用及不等式、指数函数与二次函数的增加速度的快慢的应用,属于中档题.14、【解题分析】
根据一元二次不等式和一元二次方程的关系可知,和时方程的两个实数根,利用韦达定理求解.【题目详解】不等式的解集为的两个实数根是,,根据韦达定理可知,解得:,.故答案为:【题目点拨】本题考查一元二次方程和一元二次不等式的关系,意在考查计算能力,属于基础题型.15、【解题分析】
先用中点公式的向量式求出,再用数量积的定义求出的值.【题目详解】,【题目点拨】本题主要考查向量中的中点公式应用以及数量积的定义.16、3【解题分析】
运用向量的数量积的定义可得⃑⃑⃑⃑,再利用向量的平方即为模的平方,计算可得答案.【题目详解】解:⃑⃑⃑⃑⃑⃑⃑⃑⃑.【题目点拨】本题主要考查平面向量数量积的运算,相对简单.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),2018年12月的市场占有率是;(2)选择釆购B款车型.【解题分析】
(1)求出相关系数,判断即可,求出回归方程的系数,求出回归方程代入的值,判断即可;
(2)分别求出的平均利润,判断即可.【题目详解】,故,故,故两变量之间有较强的相关关系,故可用线性回归模型拟合y与月份代码x之间的关系,,,故回归方程是,时,,即2018年12月的市场占有率是;用频率估计概率,这100辆A款单车的平均利率为:元,这100辆B款车的平均利润为:元,故会选择釆购B款车型.【题目点拨】本题考查了相关系数,回归方程以及函数代入求值,是一道中档题.18、(1)(2)见解析【解题分析】
(1)由抛物线的定义知得值即可求解(2)设的方程为:,代入,消去得的二次方程,向量坐标化结合韦达定理得,则定点可求【题目详解】(1)由抛物线的定义知,抛物线的方程为:(2)设的方程为:,代入有,设,则,,的方程为:,恒过点,【题目点拨】本题考查抛物线方程,直线与抛物线的位置关系,韦达定理的应用,向量运算,准确计算是关键,是中档题19、(1)(2)1【解题分析】试题分析:(1)由,根据正弦定理,得,可得,进而可得的值;(2)由(1)及正弦定理,得,可得的周长,,结合范围,即可求的最大值.试题解析:(1)由及正弦定理,得(2)解:由(I)得,由正弦定理得所以的周长当时,的周长取得最大值为1.20、(1)0.06;87.5;87.5;(2);(3)详见解析【解题分析】
(1)根据小矩形的面积之和等于1,列出方程,求得的值,根据中位数定义估计中位数的范围,在列出方程求解中位数,再根据众数的定义,即可求解.(2)计算两组的人数,再计算抽取的两人在同一组的概率,即可求解;(3)根据题意,得到随机变量服从二项分布,再利用二项分布的期望公式,即可求解.【题目详解】(1)由频率分布直方图可知,解得,可知样本的中位数在第4组中,不妨设为,则,解得,即样本的中位数为,由频率分布直方图可知,样本的众数为.(2)由频率分布直方图可知,在与两个分数段的学生人数分别为和,设中两名学生的竞赛成绩之差的绝对值不大于5分为事件M,则事件M发生的概率为,即事件M发生的概率为.(3)从考生中随机抽取三名,则随机变量为获得三等奖的人数,则,由频率分布直方图知,从考升中任抽取1人,此生获得三等奖的概率为,所以随机变量服从二项分布,则,,所以随机变量的分布列为01230.3430.4410.1890.027所以.【题目点拨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 存储场地租赁服务合同
- 校园保安合同的补充协议
- 网约租车合同协议书
- 和合同解协议
- 光伏项目协议书合同模板
- 婚前彩礼合同协议
- 房地产中介合同协议
- 智慧旅游合同协议
- 股东投资协议合同
- 合同出借协议
- 2025-2030中国保健品行业市场深度调研及竞争格局与投资研究报告
- 2025年江苏省无锡市锡山区中考英语一模试卷
- (二模)衢州、丽水、湖州2025年4月三地市高三教学质量检测 语文试卷(含答案解析)
- 宜昌市社区工作者招聘真题2024
- 水下潜水艇课件
- 36 阶段统计项目风险管理表甘特图
- 2025-2030中国电信增值行业运行状况与发展前景预测研究报告
- 2025年吉林铁道职业技术学院单招职业倾向性考试题库含答案
- 2024年注册计量师-一级注册计量师考试近5年真题集锦(频考类试题)带答案
- 三相异步电动机
- 沟槽管件尺寸对照表
评论
0/150
提交评论