版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省运城市临猗中学2024届数学高二第二学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正弦函数是奇函数,是正弦函数,因此是奇函数,以上推理()A.结论正确 B.大前提不正确 C.小前提不正确 D.大前提、小前提、结论都不正确2.已知定义在上的函数,若是奇函数,是偶函数,当时,,则()A. B. C. D.3.从名男生和名女生中选出名学生参加一项活动,要求至少一名女生参加,不同的选法种数是()A. B. C. D.4.设向量与,且,则()A. B. C. D.5.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=()A.3 B.1 C.-1 D.-36.若执行如图所示的程序框图,则输出S的值为()A. B. C. D.7.下列两个量之间的关系是相关关系的为()A.匀速直线运动的物体时间与位移的关系B.学生的成绩和体重C.路上酒后驾驶的人数和交通事故发生的多少D.水的体积和重量8.对任意实数,若不等式在上恒成立,则的取值范围是()A. B. C. D.9.在等差数列中,,,则的前10项和为()A.-80 B.-85 C.-88 D.-9010.使得的展开式中含有常数项的最小的n为()A. B. C. D.11.已知三棱锥的底面是等边三角形,点在平面上的射影在内(不包括边界),.记,与底面所成角为,;二面角,的平面角为,,则,,,之间的大小关系等确定的是()A. B.C.是最小角,是最大角 D.只能确定,12.已知函数,则曲线在点处切线的斜率为()A.1 B.﹣1 C.2 D.﹣2二、填空题:本题共4小题,每小题5分,共20分。13.若的展开式中常数项为,则展开式中的系数为__________.14.若x,y满足x≥1y≥-1x+y≥3,则z=x+2y15.已知双曲线C:=1(a>0,b>0),P为x轴上一动点,经过P的直线y=2x+m(m≠0)与双曲线C有且只有一个交点,则双曲线C的离心率为________.16.已知集合,若,则实数的值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某保险公司决定每月给推销员确定个具体的销售目标,对推销员实行目标管理.销售目标确定的适当与否,直接影响公司的经济效益和推销员的工作积极性,为此,该公司当月随机抽取了50位推销员上个月的月销售额(单位:万元),绘制成如图所示的频率分布直方图.(1)①根据图中数据,求出月销售额在小组内的频率.②根据直方图估计,月销售目标定为多少万元时,能够使70%的推销员完成任务?并说明理由.(2)该公司决定从月销售额为和的两个小组中,选取2位推销员介绍销售经验,求选出的推销员来自同一个小组的概率.18.(12分)五一劳动节放假,某商场进行一次大型抽奖活动.在一个抽奖盒中放有红、橙、黄、绿、蓝、紫的小球各2个,分别对应1分、2分、3分、4分、5分、6分.从袋中任取3个小球,按3个小球中最大得分的8倍计分,计分在20分到35分之间即为中奖.每个小球被取出的可能性都相等,用表示取出的3个小球中最大得分,求:(1)取出的3个小球颜色互不相同的概率;(2)随机变量的概率分布和数学期望;(3)求某人抽奖一次,中奖的概率.19.(12分)已知,使不等式成立.(1)求满足条件的实数t的集合T;(2),使不等式成立,求的最大值.20.(12分)已知函数.(1)求曲线在处的切线方程;(2)若方程恰有两个实数根,求a的值.21.(12分)设等差数列的前项和为,已知.(1)求数列的通项公式;(2)求数列的前项和为,并求使得取得最大值的序号的值.22.(10分)已知函数.(Ⅰ)当时,求在上的零点个数;(Ⅱ)当时,若有两个零点,求证:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:根据题意,分析所给推理的三段论,找出大前提,小前提,结论,再判断正误即可得到答案.详解:根据题意,该推理的大前提:正弦函数是奇函数,正确;小前提是:是正弦函数,因为该函数不是正弦函数,故错误;结论:是奇函数,,故错误.故选:C.点睛:本题考查演绎推理的基本方法,关键是理解演绎推理的定义以及三段论的形式.2、A【解题分析】
根据是偶函数判出是函数的对称轴,结合是奇函数可判断出函数是周期为的周期函数,由此求得的值.【题目详解】由于是偶函数,所以函数的一条对称轴为,由于函数是奇函数,函数图像关于原点对称,故函数是周期为的周期函数,故,故选A.【题目点拨】本小题主要考查函数的奇偶性、考查函数的对称性、考查函数的周期性,考查函数值的求法,属于基础题.3、B【解题分析】
从反面考虑,从名学生中任选名的所有选法中去掉名全是男生的情况,即为所求结果.【题目详解】从名学生中任选名,有种选法,其中全为男生的有种选法,所以选出名学生,至少有名女生的选法有种.故选:B.【题目点拨】本题考查组合问题,也可以直接考虑,分类讨论,在出现“至少”的问题时,利用正难则反的方法求解较为简单,考查计算能力,属于基础题.4、B【解题分析】
利用列方程,解方程求得的值,进而求得的值.【题目详解】由于,所以,即,而,故,故选B.【题目点拨】本小题主要考查向量数量积的坐标运算,考查二倍角公式,考查特殊角的三角函数值,属于基础题.5、D【解题分析】
∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),∴f(0)=1+b=0,解得b=-1∴f(1)=2+2-1=1.∴f(-1)=-f(1)=-1.故选D.6、C【解题分析】
首先确定流程图的功能为计数的值,然后利用裂项求和的方法即可求得最终结果.【题目详解】由题意结合流程图可知流程图输出结果为,,.本题选择C选项.【题目点拨】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.7、C【解题分析】
根据相关关系以及函数关系的概念,逐项判断,即可得出结果.【题目详解】A选项,匀速直线运动的物体时间与位移的关系是函数关系;B选项,成绩与体重之间不具有相关性;C选项,路上酒后驾驶的人数和交通事故发生的多少是相关关系;D选项,水的体积与重量是函数关系.故选C【题目点拨】本题主要考查变量间的相关关系,熟记概念即可,属于常考题型.8、B【解题分析】考点:绝对值不等式;函数恒成立问题.分析:要使不等式|x+2|-|x-1|>a恒成立,需f(x)=|x+2|-|x-1|的最小值大于a,问题转化为求f(x)的最小值.解:(1)设f(x)=|x+2|-|x-1|,则有f(x)=,当x≤-2时,f(x)有最小值-1;当-2≤x≤1时,f(x)有最小值-1;当x≥1时,f(x)=1.综上f(x)有最小值-1,所以,a<-1.故答案为B.9、A【解题分析】
用待定系数法可求出通项,于是可求得前10项和.【题目详解】设的公差为,则,,所以,,前10项和为.【题目点拨】本题主要考查等差数列的通项公式,求和公式,比较基础.10、B【解题分析】二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B【考点定位】本题考查二项式定理的应用.11、C【解题分析】
过作PO⊥平面ABC,垂足为,过作OD⊥AB,交AB于D,过作OE⊥BC,交BC于E,过作OF⊥AC,交AC于F,推导出OA<OB<OC,AB=BC=AC,OD<OF<OE,且OE<OB,OF<OA,由此得到结论.【题目详解】解:如图,过作PO⊥平面ABC,垂足为,过作OD⊥AB,交AB于D,过作OE⊥BC,交BC于E,过作OF⊥AC,交AC于F,连结OA,OB,OC,PD,PE,PF,∵△ABC为正三角形,PA<PB<PC,二面角P−BC−A,二面角P−AC−B的大小分别为,,PA,PB与底面所成角为,,∴=∠PAO,=∠PBO,γ=∠PEO,=∠PFO,OA<OB<OC,AB=BC=AC,在直角三角形OAF中,,在直角三角形OBE中,,OA<OB,∠OAF<∠OBE,则OF<OE,同理可得OD<OF,∴OD<OF<OE,且OE<OB,OF<OA,∴<,<,>,<,可得是最小角,是最大角,故选:C.【题目点拨】本题考查线面角、二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.12、A【解题分析】
将x+2看做整体,求得f(x)的解析式,进而求其导数,由导数的几何意义,计算可得所求切线的斜率.【题目详解】解:函数,即为,则,导数为,可得曲线在点处切线的斜率为1.故选:A.【题目点拨】本题考查f(x)的解析式求法,考查导数的几何意义,考查运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
首先求出的展开式的通项公式,通过计算常数项求出a的值,再利用通项公式求的系数.【题目详解】展开式的通项公式为,当时,常数项为,所以.当时,,展开式中的系数为.【题目点拨】本题考查二项式定理展开式的应用,考查二项式定理求特定项的系数,解题的关键是求出二项式的通项,属于基础题.14、1【解题分析】
画出不等式组表示的可行域,将z=x+2y变形为y=-x2+【题目详解】画出不等式组表示的可行域,如图阴影部分所示.由z=x+2y可得y=-x平移直线y=-x2+z2,由图形得,当直线经过可行域内的点A时,直线y=-由x+y=3y=-1解得x=4所以点A的坐标为(4,-1).所以zmin故答案为1.【题目点拨】利用线性规划求最值体现了数形结合思想的运用,解题的关键有两个:一是准确地画出不等式组表示的可行域;二是弄清楚目标函数中z的几何意义,根据题意判断是截距型、斜率型、还是距离型,然后再结合图形求出最优解后可得所求.15、【解题分析】即双曲线的渐近线与直线y=2x+m平行,即=2,所求的离心率e===.16、【解题分析】分析:根据集合包含关系得元素与集合属于关系,再结合元素互异性得结果.详解:因为,所以点睛:注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)①;②17,理由见解析;(2).【解题分析】
(1)①利用频率分布直方图能求出月销售额在,内的频率.②若的推销员能完成月销售额目标,则意味着的推销员不能完成该目标.根据频率分布直方图知,,和,两组频率之和为0.18,由此能求出月销售额目标应确定的标准.(2)根据直方图可知,销售额为,和,的频率之和为0.08,由可知待选的推销员一共有4人,设这4人分别为,,,,利用列举法能求出选定的推销员来自同一个小组的概率.【题目详解】解:(1)①月销售额在小组内的频率为.②若要使70%的推销员能完成月销售额目标,则意味着30%的推销员不能完成该目标.根据题图所示的频率分布直方图知,和两组的频率之和为0.18,故估计月销售额目标应定2为(万元).(2)根据直方图可知,月销售额为和的频率之和为0.08,由可知待选的推销员一共有4人.设这4人分别为,则不同的选择为,一共有6种情况,每一种情况都是等可能的,而2人来自同一组的情况有2种,所以选出的推销员来自同一个小组的概率.【题目点拨】本题考查频率、月销售额目标、概率的求法,考查频率分布直方图、列举法等基础知识,考查运算求解能力,考查化归与转化思想,属于基础题.18、(1)(2)分布列见解析,数学期望为(3)【解题分析】
(1)设事件表示“取出的3个小球上的颜色互不相同”,利用古典概型、排列组合能求出取出的3个小球颜色互不相同的概率;(2)由题意得有可能的取值为:2,3,4,5,6,分别求出相应的概率,由此能求出随机变量的概率分布列和数学期望;(3)设事件C表示“某人抽奖一次,中奖”,则,由此能求出结果.【题目详解】(1)“一次取出的3个小球上的颜色互不相同”的事件记为,则(2)由题意有可能的取值为:2,3,4,5,6;;;;所以随机变量的概率分布为23456因此的数学期望为(3)“某人抽奖一次,中奖”的事件为,则【题目点拨】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.19、(1);(2).【解题分析】
(1)利用三角不等式求出的最小值,从而得到的范围;(2)由于,使不等式成立,则的最小值小于等于的最大值,利用基本不等式求出的最小值,从而求得的最大值。【题目详解】(1)由题意知,﹐当且仅当时等号成立,所以,故集合.(2)由基本不等式可得:,当且仅当时等号成立.又因为,使不等式成立,则,即,故的最大值为.【题目点拨】本题主要考查绝对值三角不等式以及基本不等式求最值的问题,属于中档题。20、(1)(2)【解题分析】
(1)根据已知求得,可求得曲线在处的切线方程;(2)由方程恰有两个实数根,进行参变分离得,构造函数,对所构造的函数求导,分析出其导函数的正负,得出所构造的函数的单调性和图象趋势,极值,从而可得出a的值.【题目详解】(1)函数,,,曲线在处的切线方程为,即.(2)方程恰
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年贵阳2024年客运从业资格证模拟考试题及答案
- 2024年日喀则客运上岗证模拟考试
- 2024年合作经营商铺合同范本
- 2024年石家庄客运从业资格证实际操作试题答案
- 2024年湖南客运资格证模拟考试0题
- 事业单位借调流程2024年
- 中小企业提供贷款担保合作协议2024年
- 2024年员工试工协议书例文
- 2024年商业土地租赁合同
- 港航实务 皮丹丹 教材精讲班课件 60-第2章-2.8.1-航道整治的方法
- 空压机改造项目可行性研究报告写作范文
- 企业员工团队目标计划管理培训教育PPT讲解资料
- 《我和小姐姐克拉拉》阅读题及答案(一)
- 大型展会对城市会展业发展影响文献综述会展专业
- 电动单梁起重机年自检报告
- 模拟深海高压舱试验系统设计方案
- 加热管制作工艺
- 互补输出级介绍
- 设备运输方案
- 口腔颌面部外伤的救治2
- 市森林消防(防汛)专业队管理制度森林防火扑火队管理制度.doc
评论
0/150
提交评论