2024届甘肃省武威市天祝一中数学高二第二学期期末经典模拟试题含解析_第1页
2024届甘肃省武威市天祝一中数学高二第二学期期末经典模拟试题含解析_第2页
2024届甘肃省武威市天祝一中数学高二第二学期期末经典模拟试题含解析_第3页
2024届甘肃省武威市天祝一中数学高二第二学期期末经典模拟试题含解析_第4页
2024届甘肃省武威市天祝一中数学高二第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省武威市天祝一中数学高二第二学期期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若圆关于直线:对称,则直线在轴上的截距为()A.-l B.l C.3 D.-32.的内角的对边分别为,,,若的面积为,则A. B. C. D.3.平面向量与的夹角为,,,则()A. B. C.0 D.24.有,,,四种不同颜色的花要(全部)栽种在并列成一排的五个区域中,相邻的两个区域栽种花的颜色不同,且第一个区域栽种的是颜色的花,则不同栽种方法种数为()A.24 B.36 C.42 D.905.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为()A.0.12 B.0.42 C.0.46 D.0.886.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取3个球,所取的3个球颜色不同的概率为()A. B. C. D.7.已知椭圆,则以点为中点的弦所在直线方程为()A. B.C. D.8.下列运算正确的为()A.(为常数) B.C. D.9.小明、小红、小单三户人家,每户3人,共9个人相约去影院看《老师好》,9个人的座位在同一排且连在一起,若每户人家坐在一起,则不同的坐法总数为()A. B. C. D.10.已知向量,,若,则()A.-1 B.1 C.-2或1 D.-2或-111.组合数恒等于()A. B. C. D.12.袋中装有标号为1,2,3的三个小球,从中任取一个,记下它的号码,放回袋中,这样连续做三次,若抽到各球的机会均等,事件“三次抽到的号码之和为6”,事件“三次抽到的号码都是2”,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知满足约束条件若目标函数的最大值为7,则的最小值为_______.14.已知复数满足(是虚数单位),则______.15.函数f(x)=x3+ax2+(a+6)x+1有极值,则a的取值范围是_____.16.设,则二项式的展开式的常数项是.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为回馈顾客,新华都购物商场拟通过摸球兑奖的方式对500位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球(球的大小、形状一模一样),球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为40元,其余3个所标的面值均为20元,求顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是30000元,并规定袋中的4个球由标有面值为20元和40元的两种球共同组成,或标有面值为15元和45元的两种球共同组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡.请对袋中的4个球的面值给出一个合适的设计,并说明理由.提示:袋中的4个球由标有面值为a元和b元的两种球共同组成,即袋中的4个球所标的面值“既有a元又有b元”.18.(12分)如图,在四棱锥中,底面为菱形,,,为线段的中点,为线段上的一点.(1)证明:平面平面.(2)若,二面角的余弦值为,求与平面所成角的正弦值.19.(12分)在某市举行的一次市质检考试中,为了调查考试试题的有效性以及试卷的区分度,该市教研室随机抽取了参加本次质检考试的500名学生的数学考试成绩,并将其统计如下表所示.根据上表数据统计,可知考试成绩落在之间的频率为.(Ⅰ)求m、n的值;(Ⅱ)已知本欢质检中的数学测试成绩,其中近似为样本的平均数,近似为样本方差,若该市有4万考生,试估计数学成绩介于分的人数;以各组的区间的中点值代表该组的取值Ⅲ现按分层抽样的方法从成绩在以及之间的学生中随机抽取12人,再从这12人中随机抽取4人进行试卷分析,记被抽取的4人中成绩在之间的人数为X,求X的分布列以及期望.参考数据:若,则,,.20.(12分)已知函数.(1)当时,求不等式的解集;(2)若二次函数与函数的图象恒有公共点,求实数的取值范围.21.(12分)第届冬季奥林匹克运动会,将在年月日至日在北京和张家口联合举行.某研究机构为了解中学生对冰壶运动的兴趣,随机从某中学学生中抽取人进行了问卷调查,其中男、女生各人,将问卷得分情况制成茎叶图如右图:(Ⅰ)将得分不低于分的称为“A类”调查对象,某研究机构想要进一步了解“A类”调查对象的更多信息,从“A类”调查对象中抽取人,设被抽到的女生人数为,求的分布列及数学期望;(Ⅱ)通过问卷调查,得到如下列联表.完成列联表,并说明能否有的把握认为是否为“A类”调查对象与性别有关?不是“A类”调查对象是“A类”调查对象总计男女总计附参考公式与数据:,其中.22.(10分)已知定义在上的偶函数满足:当时,.(1)求函数的解析式;(2)设函数,若对于任意的,都有成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

圆关于直线:对称,等价于圆心在直线:上,由此可解出.然后令,得,即为所求.【题目详解】因为圆关于直线:对称,所以圆心在直线:上,即,解得.所以直线,令,得.故直线在轴上的截距为.故选A.【题目点拨】本题考查了圆关于直线对称,属基础题.2、C【解题分析】分析:利用面积公式和余弦定理进行计算可得。详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。3、D【解题分析】

先由,求出,再求出,进而可求出【题目详解】因为,所以,所以,所以.故选D【题目点拨】本题主要考查向量模的运算,熟记公式即可,属于基础题型.4、B【解题分析】分析:可以直接利用树状图分析解答.详解:这一种有12种,类似AC,各有12种,共36种,故答案为:B.点睛:(1)本题主要考查排列组合,考查计数原理,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)本题可以利用排列组合解答,分类讨论比较复杂.也可以利用树状图解答,比较直观.5、D【解题分析】由题意知,甲、乙都不被录取的概率为(1-0.6)(1-0.7)=0.12.∴至少有一人被录取的概率为1-0.12=0.88.故选D.考点:相互独立事件的概率.6、C【解题分析】分析:题意所求情况分为两种,两白一红,两红一白,两种情况,列式为,除以总的事件个数即可.详解:3个球颜色不同,即分为:两白一红,两红一白,两种情况,列式为,总的事件个数为,概率为.故答案为:C.点睛:这个题目考差了古典概型的计算,对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.7、A【解题分析】

利用点差法求出直线的斜率,再利用点斜式即可求出直线方程.【题目详解】解:设以点为中点的弦与椭圆交于点,,,,则,,分别把点,的坐标代入椭圆方程得:,两式相减得:,,直线的斜率,以点为中点的弦所在直线方程为:,即,故选:.【题目点拨】本题主要考查了点差法解决中点弦问题,属于中档题.8、C【解题分析】分析:由基本初等函数的导数公式可得.详解:,,,.故选C.点睛:本题考查基本初等函数的导数,牢记基本初等函数的导数公式是解题关键.9、C【解题分析】

分两步,第一步,将每一个家庭的内部成员进行全排列;第二步,将这三个家庭进行排列【题目详解】先将每一个家庭的内部成员进行全排列,有种可能然后将这三个家庭(家庭当成一个整体)进行排列,有种可能所以共有种情况故选:C【题目点拨】本题考查的是排列问题,相邻问题常用捆绑法解决.10、C【解题分析】

根据题意得到的坐标,由可得的值.【题目详解】由题,,,或,故选C【题目点拨】本题考查利用坐标法求向量差及根据向量垂直的数量积关系求参数11、D【解题分析】

根据组合数的公式得到和,再比较选项得到答案.【题目详解】.,可知故选:D.【题目点拨】本题考查组合数的计算公式,意在考查基本公式,属于基础题型.12、A【解题分析】

试题分析:由题意得,事件“三次抽到的号码之和为”的概率为,事件同时发生的概率为,所以根据条件概率的计算公式.考点:条件概率的计算.二、填空题:本题共4小题,每小题5分,共20分。13、7【解题分析】试题分析:作出不等式表示的平面区域,得到及其内部,其中把目标函数转化为,表示的斜率为,截距为,由于当截距最大时,最大,由图知,当过时,截距最大,最大,因此,,由于,当且仅当时取等号,.

考点:1、线性规划的应用;2、利用基本不等式求最值.14、【解题分析】

利用复数的除法运算化简,进而求得.【题目详解】依题意,故故答案为:.【题目点拨】本小题主要考查复数除法运算,考查复数的模的计算,属于基础题.15、{a|a<﹣3或a>6}【解题分析】

求出有两个不相等的实数解,即可求出结论.【题目详解】函数有极值,则有两个不相等的实数解,,或.故答案为:或.【题目点拨】本题考查极值存在求参数,熟练掌握三次函数图像特征及性质是解题关键,属于基础题.16、6【解题分析】试题分析:设第项为常数项,则,令可得故答案为6考点:二项式定理三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)分布列见解析;期望为50;(2)应该选择面值设计方案“”,即标有面值元和面值元的球各两个【解题分析】

(1)设顾客获得的奖励额为,随机变量的可能取值为,分别求出对应概率,列出分布列并求出期望即可;(2)分析可知期望为60元,讨论两种方案:若选择“”的面值设计,只有“”的面值组合符合期望为60元,求出方差;当球标有的面值为元和元时,面值设计是“”符合期望为60元,求出方差,比较两种情况的方差,即可得出结论.【题目详解】解:(1)设顾客获得的奖励额为,随机变量的可能取值为.,,所以的分布列如下:所以顾客所获的奖励额的期望为(2)根据商场的预算,每个顾客的平均奖励额为元.所以可先寻找使期望为60元的可能方案:当球标有的面值为元和元时,若选择“”的面值设计,因为元是面值之和的最大值,所以期望不可能为;若选择“”的面值设计,因为元是面值之和的最小值,所以期望不可能为.因此可能的面值设计是选择“”,设此方案中顾客所获得奖励额为,则的可能取值为..的分布列如下:所以的期望为的方差为当球标有的面值为元和元时,同理可排除“”、“”的面值设计,所以可能的面值设计是选择“”,设此方案中顾客所获的奖励额为,则的可能取值为..的分布列如下:所以的期望为的方差为因为即两种方案奖励额的期望都符合要求,但面值设计方案“”的奖励额的方差要比面值设计方案“”的方差小,所以应该选择面值设计方案“”,即标有面值元和面值元的球各两个.【题目点拨】本题考查了离散型随机变量的分布列,考查了期望与方差的应用,考查了学生的计算能力,属于中档题.18、(1)见解析;(2)【解题分析】

(1)由得平面PAE,进而可得证;(2)先证得平面,设,以为坐标原点,的方向为轴正方向,建立空间直角坐标系,分别计算平面的法向量为和,设与平面所成角为,则,代入计算即可得解.【题目详解】(1)证明:连接,因为,为线段的中点,所以.又,,所以为等边三角形,.因为,所以平面,又平面,所以平面平面.(2)解:设,则,因为,所以,同理可证,所以平面.如图,设,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.易知为二面角的平面角,所以,从而.由,得.又由,,知,.设平面的法向量为,由,,得,不妨设,得.又,,所以.设与平面所成角为,则.所以与平面所成角的正弦值为.【题目点拨】用向量法求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.19、(Ⅰ);(Ⅱ)5416;(Ⅲ)详见解析.【解题分析】

(Ⅰ)根据考试成绩落在之间的频率为,可知频数为140,结合样本数可求m、n;(Ⅱ)先求出样本数的平均数和方差,再结合正态分布求出数学成绩介于分的人数;(Ⅲ)求出X的所有可能取值,分别求得概率,列出分布列求出期望.【题目详解】解:Ⅰ由题意可得解得.Ⅱ依题意,成绩X人数Y1012021010040频率0.060.240.420.200.08故,.则,所以,故所求人数为.Ⅲ依题意成绩在之间的抽取9人,成绩在之间的抽取1人,故X的可能取值为0,1,2,1.故,,,.故X的分布列为X0121P故E.【题目点拨】本题主要考查利用样本估计总体和随机变量的分布列及期望,侧重考查数据分析,数学建模和数学运算的核心素养.20、(1);(2).【解题分析】

(1)将代入函数解析式,并将函数表示为分段函数形式,利用零点分段法可解出不等式的解集;(2)首先求得二次函数的最小值和函数的最大值,据此得到关于实数的不等式,求得不等式可得出实数的取值范围.【题目详解】(1)当时,.当时,,由,得,解得,此时,;当时,,由,得,解得,此时,;当时,,由由,得,解得,此时,.综上所述,不等式的解集为;(2),该函数在处取得最小值,因为,所以,函数在处取得最大值,由于二次函数与函数的图像恒有公共点,只需,即,因此,实数的取值范围是.【题目点拨】本题考查了绝对值不等式的解法,二次函数的性质,着重考查了学生对基础概念的理解,还考查了函数的恒成立问题,一般转化为最值来处理,考查了化归与转化思想的应用,属于中等题.21、(Ⅰ)见解析,(Ⅱ)见解析,没有【解题分析】

(Ⅰ)由茎叶图可知得分不低于分的人数及男女分别各几人,可知的可能取值为,结合超几何分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论