江苏省苏州市新草桥中学2024届数学高二第二学期期末监测试题含解析_第1页
江苏省苏州市新草桥中学2024届数学高二第二学期期末监测试题含解析_第2页
江苏省苏州市新草桥中学2024届数学高二第二学期期末监测试题含解析_第3页
江苏省苏州市新草桥中学2024届数学高二第二学期期末监测试题含解析_第4页
江苏省苏州市新草桥中学2024届数学高二第二学期期末监测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市新草桥中学2024届数学高二第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知随机变量满足,,则下列说法正确的是()A., B.,C., D.,2.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A. B. C. D.3.已知直三棱柱中,底面为等腰直角三角形,,,,点在上,且,则异面直线与所成角为()A. B. C. D.4.设随机变量服从正态分布,若,则函数有极值点的概率为()A.0.2 B.0.3 C.0.4 D.0.55.4名同学报名参加两个课外活动小组,每名同学限报其中的一个小组,则不同的报名方法共有()A.4种 B.16种 C.64种 D.256种6.已知双曲线E:上的四点A,B,C,D满足,若直线AD的斜率与直线AB的斜率之积为2,则双曲线C的离心率为A. B. C. D.7.设复数满足,则()A. B.C. D.28.将函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图像向左平移个单位,则所得函数图像对应的解析式为()A. B.C. D.9.有10件产品,其中3件是次品,从中任取两件,若X表示取得次品的个数,则P(X2)等于A. B.C. D.110.某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:做不到能做到高年级4510低年级3015则下列结论正确的是()附参照表:0.100.0250.012.7065.0246.635参考公式:,其中A.在犯错误的概率不超过的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”B.在犯错误的概率不超过的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”C.有以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”D.有以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”11.设,则z的共轭复数为A. B. C. D.12.已知离散型随机变量X的分布列如图,则常数c为()X01PA. B. C.或 D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中,第4项的二项式系数是______(用数字作答).14.已知从装有个球(其中个白球,1个黑球)的口袋中取出个球,,,共有种取法,在这种取法中,可以分成两类:一类是取出的个球全部为白球,另一类是取出1个黑球和个白球,共有种取法,即有等式成立,试根据上述思想,化简下列式子:________,15.设为虚数单位,复数,则的模______.16.已知函数,则函数的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,矩形和菱形所在的平面相互垂直,,为中点.求证:平面平面;若,求二面角的余弦值.18.(12分)椭圆的左右焦点分别为,与轴正半轴交于点,若为等腰直角三角形,且直线被圆所截得的弦长为2.(1)求椭圆的方程;(2)直线:与椭圆交于点,线段的中点为,射线与椭圆交于点,点为的重心,求证:的面积为定值.19.(12分)已知椭圆:的一个焦点为,点在上.(1)求椭圆的方程;(2)若直线:与椭圆相交于,两点,问轴上是否存在点,使得是以为直角顶点的等腰直角三角形?若存在,求点的坐标;若不存在,说明理由.20.(12分)某超市为了解气温对某产品销售量的影响,随机记录了该超市12月份中天的日销售量(单位:千克)与该地当日最低气温(单位:)的数据,如下表所示:求关于的线性回归方程;(精确到)判断与之间是正相关还是负相关;若该地12月份某天的最低气温为,请用中的回归方程预测该超市当日的销售量.参考公式:,参考数据:,21.(12分)已知f(x)=12sin(1)求fx(2)CD为△ABC的内角平分线,已知AC=f(x)max,BC=f(x)min22.(10分)如图,在三棱锥中,,为的中点,平面,垂足落在线段上,为的重心,已知,,,.(1)证明:平面;(2)求异面直线与所成角的余弦值;(3)设点在线段上,使得,试确定的值,使得二面角为直二面角.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:利用期望与方差的性质与公式求解即可.详解:随机变量满足,所以,解得,故选D.点睛:已知随机变量的均值、方差,求的线性函数的均值、方差和标准差,可直接用的均值、方差的性质求解.若随机变量的均值、方差、标准差,则数的均值、方差、标准差.2、D【解题分析】

先证得平面,再求得,从而得为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【题目详解】解法一:为边长为2的等边三角形,为正三棱锥,,又,分别为、中点,,,又,平面,平面,,为正方体一部分,,即,故选D.解法二:设,分别为中点,,且,为边长为2的等边三角形,又中余弦定理,作于,,为中点,,,,,又,两两垂直,,,,故选D.【题目点拨】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.3、C【解题分析】

根据题意将直三棱柱补成长方体,由,然后再过点作直线的平行线,从而可得异面直线与所成角.【题目详解】由条件将直三棱柱补成长方体,如图.由条件,设点为的中点,连接.则,所以(或其补角)为异面直线与所成角.在中,,所以为等边三角形,所以故选:C【题目点拨】本题考查异面直线所成角,要注意补形法的应用,属于中档题.4、C【解题分析】分析:函数有极值点,则有解,可得的取值范围,再根据随机变量服从正态分布,可得曲线关于直线对称,从而可得结论.详解:函数有极值点,有解,,,随机变量服从正态分布,若,.故选:C.点睛:本题考查函数的极值点,考查正态分布曲线的对称性,同时考查运算求解的能力,属于中档题.5、B【解题分析】根据题意,每个同学可以在两个课外活动小组中任选1个,即有2种选法,则4名同学一共有种选法;故选B.6、A【解题分析】很明显,A,B,C,D四点组成平行四边形ABDC,如图所示,设,则:,点A在双曲线上,则:,据此可得:,结合可得双曲线的离心率为.本题选择A选项.点睛:求双曲线离心率或离心率范围的两种方法:一种是直接建立e的关系式求e或e的范围;另一种是建立a,b,c的齐次关系式,将b用a,e表示,令两边同除以a或a2化为e的关系式,进而求解.7、A【解题分析】由,得,故选A.8、B【解题分析】

函数的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变)得,再将所得图像向左平移个单位,得,选B.9、C【解题分析】

根据超几何分布的概率公式计算各种可能的概率,得出结果【题目详解】由题意,知X取0,1,2,X服从超几何分布,它取每个值的概率都符合等可能事件的概率公式,即P(X=0)=,P(X=1)=,P(X=2)=,于是P(X<2)=P(X=0)+P(X=1)=故选C【题目点拨】本题主要考查了运用超几何分布求概率,分别求出满足题意的情况,然后相加,属于中档题.10、C【解题分析】分析:根据列联表中数据,利用公式求得,参照临界值表即可得到正确结论.详解:由公式可得,参照临界值表,,以上的把握认为,“学生能否做到‘扶跌倒老人’与年级高低有关”,故选C.点睛:本题考查了独立性检验的应用,属于基础题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3)查表比较与临界值的大小关系,作统计判断.11、D【解题分析】试题分析:的共轭复数为,故选D.考点:1.复数的四则运算;2.共轭复数的概念.12、A【解题分析】

根据所给的随机变量的分布列写出两点分步的随机变量的概率要满足的条件,一是两个概率都不小于0,二是两个概率之和是1,解出符合题意的c的值.【题目详解】由随机变量的分布列知,,,,∴,故选A.【题目点拨】本题主要考查分布列的应用,求离散型随机变量的分布列和期望,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、20【解题分析】

利用二项式的通项公式即可求出.【题目详解】二项式的通项公式为:.令,所以第4项的二项式系数是故答案为:20【题目点拨】本题考查了二项式某项的二项式系数,解决本题要注意与二项式某项的展开式系数的不同.14、【解题分析】

在式子中,从第一项到最后一项分别表示:从装有个白球,个黑球的袋子里,取出个球的所有情况取法总数的和,从装有球中取出个球的不同取法数,根据排列组合公式,易得答案.【题目详解】在中,从第一项到最后一项分别表示:从装有个白球,个黑球的袋子里,取出个球的所有情况取法总数的和,故从装有球中取出个球的不同取法数.故答案为:【题目点拨】本题结合考查推理和排列组合,处理本题的关键是熟练掌握排列组合公式,明白每一项所表示的含义,再结合已知条件进行分析,最后给出正确的答案.15、【解题分析】分析:利用复数的除法法则运算得到复数,然后根据复数模的公式进行求解即可.详解:即答案为.点睛:本题主要考查了复数代数形式的乘除运算,以及复数模的计算,同时考查计算能力,属基础题.16、【解题分析】

对求导,然后令,判断的单调性,再根据的值确定函数的最大值.【题目详解】,,令,,,令,则,令,则,当时,,当时,,在上单调递减,在,上单调递增,函数在上单调递减,根据复合函数的单调性可知,当,即,时,,函数的最大值为.故答案为.【题目点拨】本题考查了利用导数研究函数的单调性和最值和三角函数求值,考查转化思想以及计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析;.【解题分析】

推出,从而平面,进而得出,再得出,从而平面,由此能证明平面平面;以为原点,建立空间直角坐标系,利用向量法能求出二面角的余弦值.【题目详解】解:证明:平面平面,,平面平面.平面,.在菱形中,,可知为等边三角形,为中点,.,平面.平面,平面平面.由知,平面,,,,两两垂直,以为原点,如图建立空间直角坐标系.设,则,,,,.设为平面的法向量,由可得,取,同理可求平面的法向量,,即二面角的余弦值等于.【题目点拨】本题考查面面垂直的证明,线面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算能力,考查函数与方程思想,属于中档题.18、(1);(2)【解题分析】分析:(1)由等腰直角三角形的性质分析可得,又由直线与圆的位置关系可得的值,进而可得的值,将的值代入椭圆的方程即可得结论;(2)根据题意,分、两种情况讨论,若直线的斜率不存在,容易求出的面积,若直线的斜率存在,设直线的方程为,设,联立直线与椭圆的方程,结合一元二次方程中根与系数的关系,求出的面积消去参数,综合两种情况可得结论.详解:(1)由为等腰直角三角形可得,直线:被圆圆所截得的弦长为2,所以,所以椭圆的方程为.(2)若直线的斜率不存在,则.若直线的斜率存在,设直线的方程为,设,即,则,,,由题意点为重心,设,则,所以,,代入椭圆,得,整理得,设坐标原点到直线的距离为,则的面积.综上可得的面积为定值.点睛:本题主要考查待定待定系数法求抛物线及椭圆标准方程、圆锥曲线的定值问题以及点在曲线上问题,属于难题.探索圆锥曲线的定值问题常见方法有两种:①从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.19、(1)(2)见解析【解题分析】

先求出c的值,再根据,又,即可得到椭圆的方程;假设y轴上存在点,是以M为直角顶点的等腰直角三角形,设,,线段AB的中点为,根据韦达定理求出点N的坐标,再根据,,即可求出m的值,可得点M的坐标【题目详解】由题意可得,点在C上,,又,解得,,椭圆C的方程为,假设y轴上存在点,是以M为直角顶点的等腰直角三角形,设,,线段AB的中点为,由,消去y可得,,解得,,,,,,依题意有,,由,可得,可得,由可得,,,代入上式化简可得,则,解得,当时,点满足题意,当时,点满足题意【题目点拨】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.20、(1)(2)与负相关,预测该超市当日的销售量为千克【解题分析】

(1)根据线性回归直线的求解方法求解;(2)根据(1)问中的正负,判断是正相关还是负相关,再代入其值可得解.【题目详解】由题目条件可得,,故关于的线性回归方程为由可知与负相关将代入得据此预测该超市当日的销售量为千克【题目点拨】本题考查线性回归直线方程,属于基础题.21、(1)f(x)max【解题分析】

(1)先利用二倍角公式以及辅助角公式化简fx,再根据正弦函数性质求最值,(2)先根据正弦定理得AD=2BD,再根据余弦定理列方程解得cos1【题目详解】(1)f(x)=12=3∵f(x)在[0,π6]∴f(x)(2)△ADC中,ADsinC2=AC∵sin∴AD=2BD△BCD中,BD△ACD中,AD∴【题目点拨】本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论