2024届广东省-北京师范大学东莞石竹附属学校高二数学第二学期期末学业水平测试试题含解析_第1页
2024届广东省-北京师范大学东莞石竹附属学校高二数学第二学期期末学业水平测试试题含解析_第2页
2024届广东省-北京师范大学东莞石竹附属学校高二数学第二学期期末学业水平测试试题含解析_第3页
2024届广东省-北京师范大学东莞石竹附属学校高二数学第二学期期末学业水平测试试题含解析_第4页
2024届广东省-北京师范大学东莞石竹附属学校高二数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省-北京师范大学东莞石竹附属学校高二数学第二学期期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.(2-x)(2x+1)6的展开式中x4的系数为()A. B.320 C.480 D.6402.设袋中有大小相同的80个红球、20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为()A. B. C. D.3.如图,四个相同的直角三角形与中间的小正方形拼成一个大正方形,已知小正方形的外接圆恰好是大正方形的内切圆,现在大正方形内随机取一点,则此点取自阴影部分的概率为()A. B. C. D.4.若,则()A. B. C. D.5.二维空间中圆的一维测度(周长),二维测度(面积),观察发现;三维空间中球的二维测度(表面积),三维测度(体积),观察发现.则由四维空间中“超球”的三维测度,猜想其四维测度()A. B. C. D.6.若一个直三棱柱的所有棱长都为1,且其顶点都在一个球面上,则该球的表面积为().A. B. C. D.7.如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色且相邻区域所涂颜色不同,则不同的涂色方法种数为()A.56 B.72 C.64 D.848.函数在上有唯一零点,则的取值范围为A. B. C. D.9.函数在处的切线斜率为()A.1 B. C. D.10.小赵、小钱、小孙、小李到个景点旅游,每人只去一个景点,设事件“个人去的景点彼此互不相同”,事件“小赵独自去一个景点”,则()A. B. C. D.11.函数在点处的切线方程为()A. B.C. D.12.()A.9 B.12 C.15 D.3二、填空题:本题共4小题,每小题5分,共20分。13.在展开式中,常数项为_____________.(用数字作答)14.某班有名学生,其中人选修课程,另外人选修课程,从该班中任选两名学生,他们选修不同课程的概率是__________.15.设直线(为参数),曲线(为参数),直线与曲线交于两点,则__________.16.已知为偶函数,当时,,则曲线在点处的切线方程是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)定义:在等式中,把,,,…,叫做三项式的次系数列(如三项式的1次系数列是1,1,1).(1)填空:三项式的2次系数列是_______________;三项式的3次系数列是_______________;(2)由杨辉三角数阵表可以得到二项式系数的性质,类似的请用三项式次系数列中的系数表示(无须证明);(3)求的值.18.(12分)现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了人,他们月收入的频数分布及对“楼市限购令”赞成人数如下表.月收入(单位百元)频数赞成人数(1)由以上统计数据填下面列联表,并问是否有的把握认为“月收入以元为分界点对“楼市限购令”的态度有差异;月收入不低于百元的人数月收入低于百元的人数合计赞成__________________________________________不赞成__________________________________________合计__________________________________________(2)若对在、的被调查者中各随机选取两人进行追踪调查,记选中的人中不赞成“楼市限购令”的人数为,求随机变量的分布列及数学期望.参考公式:,其中.参考值表:19.(12分)如图所示,椭圆,、,为椭圆的左、右顶点.设为椭圆的左焦点,证明:当且仅当椭圆上的点在椭圆的左、右顶点时,取得最小值与最大值.若椭圆上的点到焦点距离的最大值为,最小值为,求椭圆的标准方程.若直线与中所述椭圆相交于、两点(、不是左、右顶点),且满足,求证:直线过定点,并求出该定点的坐标.20.(12分)已知点P(2,2),圆,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求点M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)已知函数的图象在点处的切线方程为.(1)求函数的解析式;(2)求函数在区间上的最大值.22.(10分)已知命题p:函数f(x)=x2-2mx+4在[2,+∞)上单调递增,命题q:关于x的不等式mx2+4(m-2)x+4>0的解集为R.若p∨q为真命题,p∧q为假命题,求m的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】,展开通项,所以时,;时,,所以的系数为,故选B.点睛:本题考查二项式定理.本题中,首先将式子展开得,再利用二项式的展开通项分别求得对应的系数,则得到问题所要求的的系数.2、D【解题分析】本题是一个古典概型,∵袋中有80个红球20个白球,若从袋中任取10个球共有种不同取法,而满足条件的事件是其中恰有6个红球,共有种取法,由古典概型公式得到P=,本题选择B选项.点睛:有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数.(1)基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举.(2)注意区分排列与组合,以及计数原理的正确使用.3、B【解题分析】分析:设大正方形的边长为1,其内切圆的直径为1,则小正方形的边长为,从而阴影部分的面积为,由此利用几何概型能求出在大正方形内随机取一点,则此点取自阴影部分的概率.详解:设大正方形的边长为1,其内切圆的直径为1,则小正方形的边长为,所以大正方形的面积为1,圆的面积为,小正方形的面积为,则阴影部分的面积为,所以在大正方形内随机取一点,则此点取自阴影部分的概率.点睛:本题主要考查了面积比的几何概型及其概率的计算问题,其中根据题意,准确求解阴影部分的面积是解答本题的关键,着重考查了推理与运算能力,以及函数与方程思想的应用,属于基础题.4、D【解题分析】

结合函数、不等式及绝对值含义判断即可【题目详解】对,若,则,但推不出,故错;对,若,设,则函数为增函数,则,故错;对,若,但推不出,故错误;对,设,则函数为增函数,当时,,则,故正确;故选:D【题目点拨】本题考查由指数、对数、幂函数及绝对值的含义比大小,属于基础题5、A【解题分析】

因为,,由此类比可得,,从而可得到结果.【题目详解】因为二维空间中圆的一维测度(周长),二维测度(面积),观察发现;三维空间中球的二维测度(表面积),三维测度(体积),观察发现.所以由四维空间中“超球”的三维测度,猜想其四为测度W,应满足,又因为,所以,故选A.【题目点拨】本题主要考查类比推理以及导数的计算.6、B【解题分析】

根据题意画出其立体图形.设此直三棱柱两底面的中心分别为,则球心为线段的中点,利用勾股定理求出球的半径,即可求得该球的表面积.【题目详解】画出其立体图形:直三棱柱的所有棱长都为1,且每个顶点都在球的球面上,设此直三棱柱两底面的中心分别为,则球心为线段的中点,设球的半径为,在中是其外接圆半径,由正弦定理可得:,,即在中∴球的表面积.故选:B.【题目点拨】本题主要考查空间几何体中位置关系、球和正棱柱的性质.解决本题的关键在于能想象出空间图形,并能准确的判断其外接球的球心就是上下底面中心连线的中点.7、D【解题分析】分析:每个区域只涂一种颜色,相邻区域颜色不相同,然后分类研究,A、C不同色和A、C同色两大类.详解:分两种情况:(1)A、C不同色(注意:B、D可同色、也可不同色,D只要不与A、C同色,所以D可以从剩余的2中颜色中任意取一色):有4×3×2×2=48种;(2)A、C同色(注意:B、D可同色、也可不同色,D只要不与A、C同色,所以D可以从剩余的3中颜色中任意取一色):有4×3×1×3=36种.共有84种,故答案为:D.点睛:(1)本题主要考查排列组合的综合问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.8、C【解题分析】分析:函数有唯一零点,则即可详解:函数为单调函数,且在上有唯一零点,故,解得故选点睛:函数为一次函数其单调性一致,不用分类讨论,为满足有唯一零点列出关于参量的不等式即可求解。9、B【解题分析】

先对函数求导,然后代入切点的横坐标,即可求得本题答案.【题目详解】由,得,所以切线斜率.故选:B【题目点拨】本题主要考查在曲线上一点的切线斜率,属基础题.10、D【解题分析】分析:这是求小赵独自去一个景点的前提下,4

个人去的景点不相同的概率,求出相应基本事件的个数,即可得出结论.详解:小赵独自去一个景点,则有3个景点可选,其余3人只能在小赵剩下的3个景点中选择,可能性为种

所以小赵独自去一个景点的可能性为种

因为4

个人去的景点不相同的可能性为种,

所以.

故选:D.点睛:本题考查条件概率,考查学生的计算能力,确定基本事件的个数是关键.11、B【解题分析】

首先求出函数在点处的导数,也就是切线的斜率,再利用点斜式求出切线方程..【题目详解】∵,∴切线斜率,又∵,∴切点为,∴切线方程为,即.故选B.【题目点拨】本题考查导数的几何意义,属于基础题.12、A【解题分析】分析:直接利用排列组合的公式计算.详解:由题得.故答案为A.点睛:(1)本题主要考查排列组合的计算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)排列数公式:==(,∈,且).组合数公式:===(∈,,且)二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

求出展开式的通项,利用的指数为零求出参数的值,再将参数代入通项即可得出展开式中常数项的值.【题目详解】展开式的通项为.令,解得.因此,展开式中的常数项为.故答案为:.【题目点拨】本题考查二项展开式中常数项的计算,一般利用展开式通项来求解,考查计算能力,属于基础题.14、【解题分析】

先计算出总的方法数,然后在每类选科人中各选一人,利用分步计算原理计算得方法数,根据古典概型概率计算公式计算出所求概率.【题目详解】∵该班有名学生则从班级中任选两名学生共有种不同的选法又∵15人选修课程,另外35人选修课程∴他们是选修不同课程的学生的情况有:故从班级中任选两名学生,他们是选修不同课程的学生的概率.【题目点拨】本小题主要考查古典概型的计算,考查分步乘法计数原理,属于基础题.15、【解题分析】试题分析:由题意得,曲线的普通方程为,直线的直角坐标方程为,所以圆心到直线的距离为,所以直线与曲线交于.考点:直线与圆的位置的弦长的计算.16、【解题分析】试题分析:当时,,则.又因为为偶函数,所以,所以,则切线斜率为,所以切线方程为,即.【考点】函数的奇偶性与解析式,导数的几何意义.【知识拓展】本题题型可归纳为“已知当时,函数,则当时,求函数的解析式”.有如下结论:若函数为偶函数,则当时,函数的解析式为;若为奇函数,则函数的解析式为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)50【解题分析】【试题分析】(1)分别将,把展开进行计算即三项式的次系数列是三项式的次系数列是;(2)运用类比思维的思想可得;(3)由题设中的定义可知表示展开式中的系数,因此可求出.解:(1)三项式的次系数列是三项式的次系数列是;(2);(3)表示展开式中的系数,所以.18、(1)列联表见解析,没有的把握认为月收入以元为分界点对“楼市限购令”的态度有差异;(2),分布列见解析.【解题分析】

(1)根据题干表格中的数据补充列联表,并计算出的观测值,将观测值与作大小比较,于此可对题中结论进行判断;(2)由题意得出随机变量的可能取值有、、、,然后利用超几何分布概率公式计算出随机变量在相应取值时的概率,可得出随机变量的分布列,并计算出该随机变量的数学期望.【题目详解】(1)列联表:月收入不低于百元的人数月收入低于百元的人数合计赞成_____________________________________不赞成_______________________________________合计___________________________________则没有的把握认为月收入以元为分界点对“楼市限购令”的态度有差异;(2)的所有可能取值有:、、、.,,,.则的分布列如下表:则的期望值是:.【题目点拨】本题考查独立性检验以及随机变量分布列与数学期望的计算,解题时要弄清楚随机变量所满足的分布列类型,再结合相应的概率公式计算即可,考查分析问题与计算能力,属于中等题.19、见解析;;见解析,.【解题分析】

设点的坐标为,令,由点在椭圆上,得,则,代入式子,利用二次函数的性质和的取值范围,求出函数的最值以及对应的的取值,即可求证;由已知与,得,,解得,,再由求出,进而求出椭圆的标准方程;假设存在满足条件的直线,设,,联立直线方程和椭圆方程进行整理,化简出一元二次方程,再利用韦达定理列出方程组,根据题意得,代入列出关于的方程,进行化简求解.【题目详解】设点的坐标为,令.由点在椭圆上,得,则,代入,得,其对称轴方程为,由题意,知恒成立,在区间上单调递增.当且仅当椭圆上的点在椭圆的左、右顶点时,取得最小值与最大值.由已知与,得,,,..椭圆的标准方程为.如图所示,设,,联立,得,则则椭圆的右顶点为,,,,即..,解得,,且均满足.当时,l的方程为直线过定点,与已知矛盾.当时,l的方程为直线过定点,满足题意,直线l过定点,定点坐标为.【题目点拨】本题考查椭圆的方程和简单几何性质,以及直线与椭圆的位置关系,同时也考查了利用构造函数的方法处理最值问题,属于难题.20、(1);(2)直线的方程为,的面积为.【解题分析】

求得圆的圆心和半径.(1)当三点均不重合时,根据圆的几何性质可知,是定点,所以的轨迹是以为直径的圆(除两点),根据圆的圆心和半径求得的轨迹方程.当三点有重合的情形时,的坐标满足上述求得的的轨迹方程.综上可得的轨迹方程.(2)根据圆的几何性质(垂径定理),求得直线的斜率,进而求得直线的方程.根据等腰三角形的几何性质求得的面积.【题目详解】圆,故圆心为,半径为.(1)当C,M,P三点均不重合时,∠CMP=90°,所以点M的轨迹是以线段PC为直径的圆(除去点P,C),线段中点为,,故的轨迹方程为(x-1)2+(y-3)2=2(x≠2,且y≠2或x≠0,且y≠4).当C,M,P三点中有重合的情形时,易求得点M的坐标为(2,2)或(0,4).综上可知,点M的轨迹是一个圆,轨迹方程为(x-1)2+(y-3)2=2.(2)由(1)可知点M的轨迹是以点N(1,3)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上.又P在圆N上,从而ON⊥PM.因为ON的斜率为3,所以的斜率为,故的方程为,即.又易得|OM|=|OP|=,点O到的距离为,,所以△P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论