海南省临高县波莲中学2024届高二数学第二学期期末质量跟踪监视试题含解析_第1页
海南省临高县波莲中学2024届高二数学第二学期期末质量跟踪监视试题含解析_第2页
海南省临高县波莲中学2024届高二数学第二学期期末质量跟踪监视试题含解析_第3页
海南省临高县波莲中学2024届高二数学第二学期期末质量跟踪监视试题含解析_第4页
海南省临高县波莲中学2024届高二数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省临高县波莲中学2024届高二数学第二学期期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则()A.a<b〈c B.b<a<c C.c〈a〈b D.c<b〈a2.设,均为实数,且,,,则()A. B. C. D.3.已知:,方程有1个根,则不可能是()A.-3 B.-2 C.-1 D.04.复数满足,且在复平面内对应的点在第四象限,则实数的取值范围是()A. B. C. D.5.函数的图象如图所示,下列数值排序正确的是()A.B.C.D.6.某市组织了一次高二调研考试,考试后统计的数学成绩服从正态分布,其密度函数,x∈(-∞,+∞),则下列命题不正确的是()A.该市这次考试的数学平均成绩为80分B.分数在120分以上的人数与分数在60分以下的人数相同C.分数在110分以上的人数与分数在50分以下的人数相同D.该市这次考试的数学成绩标准差为107.设等差数列{an}满足3a8=5a15,且A.S23 B.S24 C.S8.等于()A. B. C. D.9.正切函数是奇函数,是正切函数,因此是奇函数,以上推理()A.结论正确 B.大前提不正确 C.小前提不正确 D.以上均不正确10.命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为,类比可得在四面体中,顶点与所对面重心的连线所得四线段交于一点,且分线段比为()A. B. C. D.11.将4名学生分配到5间宿舍中的任意2间住宿,每间宿舍2人,则不同的分配方法有()A.240种 B.120种 C.90种 D.60种12.下列四个命题中,真命题的个数是()①命题“若,则”;②命题“且为真,则有且只有一个为真命题”;③命题“所有幂函数的图象经过点”;④命题“已知是的充分不必要条件”.A.1 B.2 C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中的系数为__________.14.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我没去过城市;乙说:我去过的城市比甲多,但没去过城市;丙说:我们三人去过同一城市,由此可判断甲去过的城市为__________.15.已知函数的零点,则整数的值为______.16.已知函数的导函数为,且,则_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)求的值;(2)当时,求的最大值.18.(12分)如图为一简单组合体,其底面为正方形,平面,,且,为线段的中点.(Ⅰ)证明:;(Ⅱ)求三棱锥的体积.19.(12分)已知函数(为自然对数的底数).(1)讨论函数的单调性;(2)当时,恒成立,求整数的最大值.20.(12分)已知抛物线的焦点为,过点且与轴不垂直的直线与抛物线交于点,且.(1)求抛物线的方程;(2)设直线与轴交于点,试探究:线段与的长度能否相等?如果相等,求直线的方程,如果不等,说明理由.21.(12分)已知复数.(1)求实数的值;(2)若,求的取值范围.22.(10分)已知函数.(1)讨论在上的单调性;(2)若对恒成立,求正整数的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:先对a,b,c,进行化简,然后进行比较即可.详解:,又故,故选D.点睛:考查对指数幂的化简运算,定积分计算,比较大小则通常进行估算值的大小,属于中档题.2、B【解题分析】分析:将题目中方程的根转化为两个函数图像的交点的横坐标的值,作出函数图像,根据图像可得出的大小关系.详解:在同一平面直角坐标系中,分别作出函数的图像由图可知,故选B.点睛:解决本题,要注意①方程有实数根②函数图像与轴有交点③函数有零点三者之间的等价关系,解决此类问题时,有时候采用“数形结合”的策略往往能起到意想不到的效果.3、D【解题分析】

由题意可得,可令,求得导数和单调性、最值,运用排除法即可得到所求结论.【题目详解】,方程有1个根,可得,可令,,可得时,,递增;时,,递减,可得时,取得最大值,且时,,若时,,可得舍去,方程有1个根;若时,,可得,方程有1个根;若时,,可得,方程有1个根;若时,,无解方程没有实根.故选D.【题目点拨】本题考查函数方程的转化思想,以及换元法和导数的运用:求单调性和极值、最值,考查化简运算能力,属于中档题.4、C【解题分析】

首先化简,通过所对点在第四象限建立不等式组,得到答案.【题目详解】根据题意得,,因为复平面内对应的点在第四象限,所以,解得,故选C.【题目点拨】本题主要考查复数的四则运算,复数的几何意义,难度不大.5、B【解题分析】

根据已知条件可以把转化为即为函数在为和对应两点连线的斜率,且,是分别为时对应图像上点的切线斜率,再结合图像即可得到答案.【题目详解】,是分别为时对应图像上点的切线斜率,,为图像上为和对应两点连线的斜率,(如图)由图可知,故选:B【题目点拨】本题考查了导数的几何意义以及斜率公式,比较斜率大小,属于较易题.6、B【解题分析】分析:根据密度函数的特点可得:平均成绩及标准差,再结合正态曲线的对称性可得分数在110分以上的人数与分数在50分以下的人数相同,从而即可选出答案.详解:密度函数,该市这次考试的数学平均成绩为80分该市这次考试的数学标准差为10,从图形上看,它关于直线对称,且50与110也关于直线对称,故分数在110分以上的人数与分数在50分以下的人数相同.故选B.点睛:本题主要考查了正态分布曲线的特点及曲线所表示的意义,以及利用几何图形的对称性求解.7、C【解题分析】因a8=a1+7d,a15=a1+14d,故由题设3a8=5a158、A【解题分析】

根据排列数的定义求解.【题目详解】,故选A.【题目点拨】本题考查排列数的定义.9、C【解题分析】

根据三段论的要求:找出大前提,小前提,结论,再判断正误即可。【题目详解】大前提:正切函数是奇函数,正确;小前提:是正切函数,因为该函数为复合函数,故错误;结论:是奇函数,该函数为偶函数,故错误;结合三段论可得小前提不正确.故答案选C【题目点拨】本题考查简易逻辑,考查三段论,属于基础题。10、C【解题分析】

如图,在中,可证明,且与交于O,同理可证其余顶点与对面重心的连线交于O,即得解.【题目详解】如图在四面体中,设是的重心,连接并延长交CD于E,连接,则经过,在中,,且与交于O,同理,其余顶点与对面重心的连线交于O,也满足比例关系.故选:C【题目点拨】本题考查了三角形和四面体性质的类比推理,考查了学生逻辑推理,空间想象,数学运算的能力,属于中档题.11、D【解题分析】

根据分步计数原理分两步:先安排宿舍,再分配学生,继而得到结果.【题目详解】根据题意可以分两步完成:第一步:选宿舍有10种;第二步:分配学生有6种;根据分步计数原理有:10×6=60种.故选D.【题目点拨】本题考查排列组合及计数原理的实际应用,考查了分析问题解决问题的能力,属于基础题.12、C【解题分析】

①令,研究其单调性判断.②根据“且”构成的复合命题定义判断.③根据幂函数的图象判断.④由,判断充分性,取特殊值判断必要性.【题目详解】①令,,所以在上递增所以,所以,故正确.②若且为真,则都为真命题,故错误.③因为所有幂函数的图象经过点,故正确.④因为,所以,故充分性成立,当时,推不出,所以不必要,故正确.故选:C【题目点拨】本题主要考查命题的真假判断,还考查了理解辨析的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、-10【解题分析】分析:利用二项式展开式通项即可得出答案.详解:,当时,.故答案为:-10.点睛:求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k+1,代回通项公式即可.14、A【解题分析】分析:一般利用假设分析法,找到甲去过的城市.详解:假设甲去过的城市为A,则乙去过的城市为A,C,丙去过A城市.假设甲去过的城市为B时,则乙说的不正确,所以甲去过城市不能为B.故答案为:A.点睛:(1)本题主要考查推理证明,意在考查学生对该知识的掌握水平和推理能力.(2)类似本题的题目,一般都是利用假设分析推理法找到答案.15、3【解题分析】

根据函数单调性可知若存在零点则零点唯一,由零点存在定理可判断出零点所在区间,从而求得结果.【题目详解】由题意知:在上单调递增若存在零点,则存在唯一一个零点又,由零点存在定理可知:,则本题正确结果:【题目点拨】本题考查零点存在定理的应用,属于基础题.16、.【解题分析】

由导数的运算公式,求得,令,即可求解,得到答案.【题目详解】由题意,函数,则,所以,解得.【题目点拨】本题主要考查了导数的运算,其中解答中熟记导数的运算公式,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】分析:(1)分别令,,两式相加可得的值;设最大,则有,即解之即可.详解:(1)令可得,,令可得,,两式相加可得:,所以;(2)因为,所以,设最大,则有,即,解得,因为,所以,此时的最大值为.点睛:本题主要考查二项式定理的应用,属于中档题.18、(1)见解析(2)【解题分析】试题分析:(Ⅰ)要证线线垂直,一般先证线面垂直,注意到底面,考虑证明与平面平行(或其内一条直线平行),由于是中点,因此取中点(实质上是与的交点),可证是平行四边形,结论得证;(Ⅱ)求三棱锥的体积,采用换底,即,由已知可证就是三棱锥的高,从而易得体积.试题解析:(Ⅰ)连结与交于点,则为的中点,连结,∵为线段的中点,∴且又且∴且∴四边形为平行四边形,∴,即.又∵平面,面,∴,∵,∴,(Ⅱ)∵平面,平面,∴平面平面∵,平面平面,平面,∴平面.三棱锥的体积考点:线面垂直的判定与性质,三棱锥的体积.19、(1)见解析;(2)的最大值为1.【解题分析】

(1)根据的不同范围,判断导函数的符号,从而得到的单调性;(2)方法一:构造新函数,通过讨论的范围,判断单调性,从而确定结果;方法二:利用分离变量法,把问题变为,求解函数最小值得到结果.【题目详解】(1)当时,在上递增;当时,令,解得:在上递减,在上递增;当时,在上递减(2)由题意得:即对于恒成立方法一、令,则当时,在上递增,且,符合题意;当时,时,单调递增则存在,使得,且在上递减,在上递增由得:又整数的最大值为另一方面,时,,,时成立方法二、原不等式等价于:恒成立令令,则在上递增,又,存在,使得且在上递减,在上递增又,又,整数的最大值为【题目点拨】本题主要考查导数在函数单调性中的应用,以及导数当中的恒成立问题.处理恒成立问题一方面可以构造新函数,通过研究新函数的单调性,求解出范围;另一方面也可以采用分离变量的方式,得到参数与新函数的大小关系,最终确定结果.20、(1)(2)当的方程为时有.【解题分析】

(1)设直线,与抛物线方程联立,利用韦达定理得到方程,解方程求得,从而得到抛物线方程;(2)将与抛物线方程联立,利用韦达定理可得,根据焦点弦长公式可求得,利用两点间距离公式得,利用构造方程,解方程求得,从而得到直线的方程.【题目详解】(1)设直线,代入抛物线方程得:,解得:抛物线方程为:(2)由(1)知:联立得:此时恒成立,过焦点由,由得:,即:,解得:或(舍)当直线方程为:时,【题目点拨】本题考查直线与抛物线综合应用问题,涉及到抛物线方程的求解、焦点弦长公式的应用等知识;难点在于利用等长关系构造方程后,对于高次方程的求解,解高次方程时,需采用因式分解的方式来进行求解.21、(1);(2).【解题分析】

(1)根据题意,先计算出,再由即可求出结果;(2)先由(1)知,再由复数的几何意义即可求出结果.【题目详解】(1)因为,,所以,因为,所以,解得或,因为,所以.(2)由(1)知,因为,所以在复平面内对应点的轨迹为以(0,1)为圆心,以2为半径的圆.故在复平面内表示对应的点到坐标原点的距离,所以的取值范围即:以(0,1)为圆心,以2为半径的圆上的点到坐标原点的距离,所以,即.故的取值范围为.【题目点拨】本题主要考查复数的运算以及复数的几何意义

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论