2024届浙江省宁波市慈溪市三山高级中学等六校高二数学第二学期期末质量跟踪监视试题含解析_第1页
2024届浙江省宁波市慈溪市三山高级中学等六校高二数学第二学期期末质量跟踪监视试题含解析_第2页
2024届浙江省宁波市慈溪市三山高级中学等六校高二数学第二学期期末质量跟踪监视试题含解析_第3页
2024届浙江省宁波市慈溪市三山高级中学等六校高二数学第二学期期末质量跟踪监视试题含解析_第4页
2024届浙江省宁波市慈溪市三山高级中学等六校高二数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省宁波市慈溪市三山高级中学等六校高二数学第二学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数与(且)的图象关于直线对称,则“是增函数”的一个充分不必要条件是()A. B. C. D.2.设随机变量服从正态分布,若,则()A. B. C. D.与的值有关3.设随机变量,若,则等于()A. B. C. D.4.设,则A. B. C. D.5.已知,,是不全相等的正数,则下列命题正确的个数为()①;②与及中至少有一个成立;③,,不能同时成立.A. B. C. D.6.已知,,,,若(、均为正实数),根据以上等式,可推测、的值,则等于()A. B. C. D.7.已知复数,则复数在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数(单位:辆)均服从正态分布,若,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为()A. B. C. D.9.函数在区间上的最大值为()A.2 B. C. D.10.执行如图所示的程序框图,若输入的,则输出的,的值分别为()A.3,5 B.4,7 C.5,9 D.6,1111.已知复数为虚数单位,是的共轭复数,则()A. B. C. D.12.将曲线按变换后的曲线的参数方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知正方体的棱长为2,E,F分别为棱的中点,则四棱锥的体积为__________.14.已知函数在上单调递增,则的取值范围为_______.15.若从4名男生和3名女生中任选2人参加演讲比赛,则至少选出1名女生的概率为_______(结果用分数表示).16.已知向量与共线且方向相同,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)函数.(Ⅰ)若时,求函数的单调区间;(Ⅱ)设,若函数在上有两个零点,求实数的取值范围.18.(12分)已知函数,且函数在和处都取得极值.(1)求,的值;(2)求函数的单调递增区间.19.(12分)如图,四棱锥中,底面为平行四边形,底面,是棱的中点,且.(1)求证:平面;(2)如果是棱上一点,且直线与平面所成角的正弦值为,求的值.20.(12分)在中,内角,,的对边分别是,,,且满足:.(Ⅰ)求角的大小;(Ⅱ)若,求的最大值.21.(12分)在一次购物抽奖活动中,假设某张奖券中有一等奖券张,可获得价值元的奖品,有二等奖券张,每张可获得价值元的奖品,其余张没有奖,某顾客从此张奖券中任抽张,求(1)该顾客中奖的概率;(2)该顾客获得奖品总价值为元的概率.22.(10分)为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了年下半年该市名农民工(其中技术工、非技术工各名)的月工资,得到这名农民工月工资的中位数为百元(假设这名农民工的月工资均在(百元)内)且月工资收入在(百元)内的人数为,并根据调查结果画出如图所示的频率分布直方图:(Ⅰ)求,的值;(Ⅱ)已知这名农民工中月工资高于平均数的技术工有名,非技术工有名,则能否在犯错误的概率不超过的前提下认为是不是技术工与月工资是否高于平均数有关系?参考公式及数据:,其中.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:先求出,再利用充分不必要条件的定义得到充分不必要条件.详解:因为函数与(且)的图象关于直线对称,所以.选项A,是“是增函数”的非充分非必要条件,所以是错误的.选项B,是“是增函数”的非充分非必要条件,所以是错误的.选项C,是“是增函数”的充分非必要条件,所以是正确的.选项D,是“是增函数”的充分必要条件,所以是错误的.故答案为C.点睛:(1)本题主要考查充分条件必要条件的判断,意在考查学生对这些知识的掌握水平.(2)已知命题是条件,命题是结论,充分条件:若,则是充分条件.必要条件:若,则是必要条件.2、A【解题分析】分析:根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得,从而求出即可.详解:随机变量服从正态分布,正态曲线的对称轴是,,而与关于对称,由正态曲线的对称性得:,故.故选:A.点睛:解决正态分布问题有三个关键点:(1)对称轴x=μ;(2)标准差σ;(3)分布区间.利用对称性可求指定范围内的概率值;由μ,σ,分布区间的特征进行转化,使分布区间转化为3σ特殊区间,从而求出所求概率.注意只有在标准正态分布下对称轴才为x=0.3、C【解题分析】由于,则由正态分布图形可知图形关于对称,故,则,故选C.4、C【解题分析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后求解复数的模.详解:,则,故选c.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.5、C【解题分析】

①假设等式成立,由其推出a、b、c的关系,判断与题干是否相符;②假设其全部不成立,由此判断是否存在符合条件的数;③举例即可说明其是否能够同时成立.【题目详解】对①,假设(a-b)2+(b-c)2+(c-a)2=0⇒a=b=c与已知a、b、c是不全相等的正数矛盾,∴①正确;

对②,假设都不成立,这样的数a、b不存在,∴②正确;

对③,举例a=1,b=2,c=3,a≠c,b≠c,a≠b能同时成立,∴③不正确.

故选C.【题目点拨】本题考查命题真假的判断,利用反证法、分析法等方式即可证明,有时运用举例说明的方式更快捷.6、B【解题分析】

根据前面几个等式归纳出一个关于的等式,再令可得出和的值,由此可计算出的值.【题目详解】,,,由上可归纳出,当时,则有,,,因此,,故选B.【题目点拨】本题考查归纳推理,解题时要根据前几个等式或不等式的结构进行归纳,考查推理能力,属于中等题.7、D【解题分析】因为,所以复数在复平面内对应的点为,在第四象限,选D.8、C【解题分析】分析:根据正态曲线的对称性求解即可.详解:根据正态曲线的对称性,每个收费口超过辆的概率,这三个收费口每天至少有一个超过辆的概率,故选C.点睛:本题主要考查正态分布的性质与实际应用,属于中档题.有关正态分布的应用题考查知识点较为清晰,只要掌握以下两点,问题就能迎刃而解:(1)仔细阅读,将实际问题与正态分布“挂起钩来”;(2)熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系.9、D【解题分析】

求出导函数,利用导数确定函数的单调性,从而可确定最大值.【题目详解】,当时,;时,,∴已知函数在上是增函数,在上是减函数,.故选D.【题目点拨】本题考查用导数求函数的最值.解题时先求出函数的导函数,由导函数的正负确定函数的增减,从而确定最值,在闭区间的最值有时可能在区间的端点处取得,要注意比较.10、C【解题分析】执行第一次循环后,,,执行第二次循环后,,,执行第三次循环后,,,执行第四次循环后,此时,不再执行循环体,故选C.点睛:对于比较复杂的流程图,可以模拟计算机把每个语句依次执行一次,找出规律即可.11、C【解题分析】,选C.12、D【解题分析】由变换:可得:,代入曲线可得:,即为:令(θ为参数)即可得出参数方程.故选D.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由题意可得,再利用三棱锥的体积公式进行计算即可.【题目详解】由已知得,,,四边形是菱形,所以.【题目点拨】本题考查几何体的体积,解题的关键是把四棱锥的体积转化为两个三棱锥的体积,属于基础题.14、【解题分析】分析:由条件可得①,②,由单调递增的定义可知③,由①②③求得交集即可得到答案详解:函数在上单调递增,时为增,即①时也为增,即有②又由单调递增的定义可知③由②可得由③可得故的取值范围为点睛:本题考查了分段函数的应用,考查了函数的单调性及其应用,助于分段函数的分界点的情况,是一道中档题,也是易错题。15、.【解题分析】分析:从4名男生和3名女生中任选2人参加演讲比赛,则所有可能结果共有种,设事件A“所选2人都是男生”,则A事件“所选2人都是男生”包含的基本事件个数有种,即可求出A事件的概率,从而利用即可.详解:从4名男生和3名女生中任选2人参加演讲比赛,则所有可能结果共有种,设事件A“所选2人都是男生”,则A事件“所选2人都是男生”包含的基本事件个数有种,,故至少选出1名女生的概率为.故答案为:.点睛:本题考查概率的求法,解题时要认真审题,注意等可能事件概率计算公式、对立事件概率计算公式的合理运用.16、3【解题分析】

先根据向量平行,得到,计算出t的值,再检验方向是否相同.【题目详解】因为向量与共线且方向相同所以得.解得或.当时,,不满足条件;当时,,与方向相同,故.【题目点拨】本题考查两向量平行的坐标表示,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解题分析】

(Ⅰ)当时,,解不等式则单调区间可求;(Ⅱ)在上有两个零点,等价于在上有两解,分离参数,构造函数,求导求其最值即可求解【题目详解】(Ⅰ)当时,的定义域为,当,时,,在和上单调递增.当时,,在上单调递减.故的单调增区间为,;单调减区间为(Ⅱ)因为在上有两个零点,等价于在上有两解,令则令则在上单调递增,又在上有,在有时,,时,在上单调递减,在上单调递增.,,由有两解及可知.【题目点拨】本题考查函数的单调区间及函数最值,不等式恒成立,分离参数法,零点个数问题,准确计算是关键,是中档题18、(1),;(2).【解题分析】

(1)易得和为导函数的两个零点,代入计算即可求得.(2)求导分析的解集即可.【题目详解】(1)∵.∴,∵函数在和处都取得极值,故和为的两根.故.即,(2)由(1)得故当,即时,即,解得或.∴函数的单调递增区间为.【题目点拨】本题主要考查了根据极值点求解参数的问题以及求导分析函数单调增区间的问题.需要根据题意求导,根据极值点为导函数的零点以及导函数大于等于0则原函数单调递增求解集即可.属于中档题.19、(1)证明见解析;(2).【解题分析】试题分析:(1)由所以.又因为底面平面;(2)如图以为原点建立空间直角坐标系,求得平面的法向量和.试题解析:(1)连结,因为在中,,所以,所以.因为,所以.又因为底面,所以,因为,所以平面(2)如图以为原点,所在直线分别为轴建立空间直角坐标系,则.因为是棱的中点,所以.所以,设为平面的法向量,所以,即,令,则,所以平面的法向量因为是在棱上一点,所以设.设直线与平面所成角为,因为平面的法向量,所以.解得,即,所以考点:1、线面垂直;2、线面角.20、(Ⅰ);(Ⅱ)2.【解题分析】

(Ⅰ)运用正弦定理实现角边转化,然后利用余弦定理,求出角的大小;(Ⅱ)方法1:由(II)及,利用余弦定理,可得,再利用基本不等式,可求出的最大值;方法2:利用正弦定理实现边角转化,利用两角和的正弦公式和辅助角公式,利用正弦型函数的单调性,可求出的最大值;【题目详解】(I)由正弦定理得:,因为,所以,所以由余弦定理得:,又在中,,所以.(II)方法1:由(I)及,得,即,因为,(当且仅当时等号成立)所以.则(当且仅当时等号成立)故的最大值为2.方法2:由正弦定理得,,则,因为,所以,故的最大值为2(当时).【题目点拨】本题考查了正弦定理、余弦定理、基本不等式,考查了二角和的正弦公式及辅助角公式,考查了数学运算能力.21、(1);(2).【解题分析】分析:(1)由题意求出该顾客没有中奖的概率,由此利用对立事件概率计算公式能求出该顾客中奖的概率;(2)利用古典概

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论