江西奉新县2024届高二数学第二学期期末达标测试试题含解析_第1页
江西奉新县2024届高二数学第二学期期末达标测试试题含解析_第2页
江西奉新县2024届高二数学第二学期期末达标测试试题含解析_第3页
江西奉新县2024届高二数学第二学期期末达标测试试题含解析_第4页
江西奉新县2024届高二数学第二学期期末达标测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西奉新县2024届高二数学第二学期期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列四个结论:①在回归分析模型中,残差平方和越大,说明模型的拟合效果越好;②某学校有男教师60名、女教师40名,为了解教师的体育爱好情况,在全体教师中抽取20名调查,则宜采用的抽样方法是分层抽样;③线性相关系数越大,两个变量的线性相关性越弱;反之,线性相关性越强;④在回归方程中,当解释变量每增加一个单位时,预报变量增加0.5个单位.其中正确的结论是()A.①② B.①④C.②③ D.②④2.现对某次大型联考的1.2万份成绩进行分析,该成绩服从正态分布,已知,则成绩高于570的学生人数约为()A.1200 B.2400 C.3000 D.15003.过三点,,的圆交y轴于M,N两点,则()A.2 B.8 C.4 D.104.已知,则()A. B.186 C.240 D.3045.圆与的位置关系是()A.相交 B.外切 C.内切 D.相离.6.下列几种推理中是演绎推理的序号为()A.由,,,…猜想B.半径为的圆的面积,单位圆的面积C.猜想数列,,,…的通项为D.由平面直角坐标系中,圆的方程为推测空间直角坐标系中球的方程为7.抛物线的焦点到双曲线的渐近线的距离为()A. B. C.1 D.8.5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为()A.240种 B.120种 C.96种 D.480种9.下列命题中:①“x>y”是“x②已知随机变量X服从正态分布N3,  ③线性回归直线方程y=bx+④命题“∃x∈R,x2+x+1>0其中正确的个数是()A.1 B.2 C.3 D.410.下列选项叙述错误的是()A.命题“若,则”的逆否命题是“若,则”B.若命题,则C.若为真命题,则,均为真命题D.若命题为真命题,则的取值范围为11.设集合,,,则中的元素个数为()A. B. C. D.12.在体育选修课排球模块基本功发球测试中,计分规则如下满分为10分:①每人可发球7次,每成功一次记1分;②若连续两次发球成功加分,连续三次发球成功加1分,连续四次发球成功加分,以此类推,,连续七次发球成功加3分假设某同学每次发球成功的概率为,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是(

)A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直线ax-ay-1=0与圆(x-2)2+y2=1交于A,B两点,过A,B分别作y轴的垂线与y轴交于C,D两点,若14.以下个命题中,所有正确命题的序号是______.①已知复数,则;②若,则③一支运动队有男运动员人,女运动员人,用分层抽样的方法从全体运动员中抽取一个容量为的样本,则样本中男运动员有人;④若离散型随机变量的方差为,则.15.如图为一个空间几何体的三视图,其主视图与左视图是边长为的正三角形,俯视图轮廓是正方形,则该几何体的侧而积为_______.16.若复数满足,则的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据(1)求(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据1求出的线性同归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(附:,,,,其中,为样本平均值)18.(12分)已知(1+m)n(m是正实数)的展开式的二项式系数之和为128,展开式中含x项的系数为84,(I)求m,n的值(II)求(1+m)n(1-x)的展开式中有理项的系数和.19.(12分)在四棱锥中,,,,为棱上一点(不包括端点),且满足.(1)求证:平面平面;(2)为的中点,求二面角的余弦值的大小.20.(12分)现将甲、乙两个学生在高二的6次数学测试的成绩(百分制)制成如图所示的茎叶图,进人高三后,由于改进了学习方法,甲、乙这两个学生的考试数学成绩预计同时有了大的提升.若甲(乙)的高二任意一次考试成绩为,则甲(乙)的高三对应的考试成绩预计为(若>100.则取为100).若已知甲、乙两个学生的高二6次考试成绩分别都是由低到高进步的,定义为高三的任意一次考试后甲、乙两个学生的当次成绩之差的绝对值.(I)试预测:在将要进行的高三6次测试中,甲、乙两个学生的平均成绩分别为多少?(计算结果四舍五入,取整数值)(Ⅱ)求的分布列和数学期望.21.(12分)某市召开全市创建全国文明城市动员大会,会议向全市人民发出动员令,吹响了集结号.为了了解哪些人更关注此活动,某机构随机抽取了年龄在15-75岁之间的100人进行调查,并按年龄绘制的频率分布直方图如图所示,其分组区间为:,,,,,,把年龄落在和内的人分别称为“青少年人”和“中老年人”.经统计“青少年人”与“中老年人”的人数之比为.(1)求图中,的值,若以每个小区间的中点值代替该区间的平均值,估计这100人年龄的平均值;(2)若“青少年人”中有15人关注此活动,根据已知条件完成题中的列联表,根据此统计结果,问能否有99.9%的把握认为“中老年人”比“青少年人”更加关注此活动?关注不关注合计青少年人15中老年人合计5050100附参考公式及参考数据:,其中.0.0500.0100.0013.8416.63510.82822.(10分)将正整数排成如图的三角形数阵,记第行的个数之和为.(1)设,计算,,的值,并猜想的表达式;(2)用数学归纳法证明(1)的猜想.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

根据残差的意义可判断①;根据分成抽样特征,判断②;根据相关系数的意义即可判断③;由回归方程的系数,可判断④.【题目详解】根据残差的意义,可知当残差的平方和越小,模拟效果越好,所以①错误;当个体差异明显时,选用分层抽样法抽样,所以②正确;根据线性相关系数特征,当相关系数越大,两个变量的线性相关性越强,所以③错误;根据回归方程的系数为0.5,所以当解释变量每增加一个单位时,预报变量增加0.5个单位.综上,②④正确,故选D.【题目点拨】本题考查了统计的概念和基本应用,抽样方法、回归方程和相关系数的概念和性质,属于基础题.2、A【解题分析】

根据正态分布的对称性,求得的值,进而求得高于的学生人数的估计值.【题目详解】,则成绩高于570的学生人数约为.故选A.【题目点拨】本小题主要考查正态分布的对称性,考查计算正态分布指定区间的概率,属于基础题.3、C【解题分析】

由已知得,,所以,所以,即为直角三角形,其外接圆圆心为AC中点,半径为长为,所以外接圆方程为,令,得,所以,故选C.考点:圆的方程.4、A【解题分析】

首先令,这样可以求出的值,然后把因式分解,这样可以变成两个二项式的乘积的形式,利用两个二项式的通项公式,就可以求出的会下,最后可以计算出的值.【题目详解】令,由已知等式可得:,,设的通项公式为:,则常数项、的系数、的系数分别为:;设的通项公式为:,则常数项、的系数、的系数分别为:,,所以,故本题选A.【题目点拨】本题考查了二项式定理的应用,正确求出通项公式是解题的关键.5、A【解题分析】

试题分析:由题是给两圆标准方程为:,因为,所以两圆相离,故选D.考点:圆与圆的位置关系.6、B【解题分析】

根据演绎推理、归纳推理和类比推理的概念可得答案.【题目详解】A.是由特殊到一般,是归纳推理.B.是由一般到特殊,是演绎推理.C.是由特殊到一般,是归纳推理.D.是由一类事物的特征,得到另一类事物的特征,是类比推理.故选:B【题目点拨】本题考查对推理类型的判断,属于基础题.7、B【解题分析】抛物线的焦点为:,双曲线的渐近线为:.点到渐近线的距离为:.故选B.8、A【解题分析】

由题先把5本书的两本捆起来看作一个元素,这一个元素和其他的三个元素在四个位置全排列,根据分步计数原理两个过程的结果数相乘即可得答案。【题目详解】由题先把5本书的两本捆起来看作一个元素共有种可能,这一个元素和其他的三个元素在四个位置全排列共有种可能,所以不同的分法种数为种,故选A.【题目点拨】本题考查排列组合与分步计数原理,属于一般题。9、B【解题分析】

①充要条件即等价条件,不等价则不充要;②根据正态分布的特征,且μ=3,得到P(X≤0)=P(X≥6)=1-P(X≤6),判断其正确;③根据回归直线的特征,得出其正确;④写出命题p的否定¬p,判定其错误;最后得出结果.【题目详解】对于①,由x>y≥0,可以推出x2>y2,充分性成立,x2对于②,根据题意得P(X≤0)=P(X≥6)=1-P(X≤6)=1-0.72=0.28,所以②正确;对于③,根据回归直线一定会过样本中心点,所以③正确;对于④,命题“∃x∈R,x2所以正确命题有两个,故选B.【题目点拨】该题考查的是有关判断命题的正误的问题,涉及到的知识点有充要条件,正态分布,含有一个量词的命题的否定,回归直线方程的特征,属于简单题目.10、C【解题分析】分析:根据四种命题的关系进行判断A、B,根据或命题的真值表进行判断C,由全称命题为真的条件求D中参数的值.详解:命题“若,则”的逆否命题是“若,则”,A正确;若命题,则,B正确;若为真命题,则,只要有一个为真,C错误;若命题为真命题,则,,D正确.故选C.点睛:判断命题真假只能对每一个命题进行判断,直到选出需要的结论为止.命题考查四种命题的关系,考查含逻辑连接词的命题的真假以及全称命题为真时求参数的取值范围,掌握相应的概念是解题基础.11、C【解题分析】分析:由题意列表计算所有可能的值,然后结合集合元素的互异性确定集合M,最后确定其元素的个数即可.详解:结合题意列表计算M中所有可能的值如下:2341234246836912观察可得:,据此可知中的元素个数为.本题选择C选项.点睛:本题主要考查集合的表示方法,集合元素的互异性等知识,意在考查学生的转化能力和计算求解能力.12、B【解题分析】

明确恰好得5分的所有情况:发球四次得分,有两个连续得分和发球四次得分,有三个连续得分,分别求解可得.【题目详解】该同学在测试中恰好得5分有两种情况:四次发球成功,有两个连续得分,此时概率;四次发球成功,有三个连续得分,分为连续得分在首尾和不在首尾两类,此时概率,所求概率;故选B.【题目点拨】本题主要考查相互独立事件的概率,题目稍有难度,侧重考查数学建模和数学运算的核心素养.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

利用圆心到直线的距离可求出d,再利用勾股定理求得答案.【题目详解】解:可得直线直线ax﹣ay﹣1=0的斜率为1.圆心(2,0)到直线距离d=|2a-1|∵|CD|=1,∴|AB|=2|CD|=∴21-d2=2故答案为:1.【题目点拨】本题主要考查直线与圆的位置关系,意在考查学生的转化能力,分析能力,计算能力,难度不大.14、①③④【解题分析】

根据复数的模的运算可知,①正确;代入,,所得式子作差即可知②正确;利用分层抽样原则计算可知③正确;根据方差的性质可知④正确.【题目详解】①,则,①正确;②令,则;令,则,②错误;③抽样比为:,则男运动员应抽取:人,③正确;④由方差的性质可知:,④正确.本题正确结果:①③④【题目点拨】本题考查命题的真假性的判断,涉及到复数模长运算、二项式系数和、分层抽样、方差的性质等知识,属于中档题.15、8【解题分析】

首先根据三视图转换成立体图形,进一步利用几何体的侧面积公式求出结果.【题目详解】解:根据三视图得知:该几何体是以底面边长为2,高为的正四棱锥.如图四棱锥

所以:正四棱锥的侧面的高为:,

则正四棱锥的侧面积为:.

故答案为8.【题目点拨】本题考查的知识要点:三视图和立体图形之间的转换,几何体的侧面积公式的应用,主要考查学生的空间想象能力和应用能力.16、【解题分析】

根据复数的模的几何意义,结合的几何意义,设出圆上任意一点坐标,利用两点间距离公式列式,化简求得的取值范围.【题目详解】由于复数满足,故复数对应的点在圆心为原点,半径为的圆上,设圆上任意一点的坐标为.表示圆上的点到和两点距离之和,即①,①式平方得,由于,所以,所以,所以,所以.故答案为:.【题目点拨】本小题主要考查复数模的几何意义,考查运算求解能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)19.65【解题分析】分析:(1)根据最小二乘法,求得,进而得到,即可得到回归直线的方程;(2)由(1)中的回归直线方程,即可求解求解技前生产100吨甲产品的能耗,进而求得降低的生产能耗.详解:(1)由知:,所以由最小二乘法确定的回归方程的系数为:,因此,所求的线性回归方程为.(3)由1的回归方程及技改前生产100吨甲产品的生产能耗,得降低的生产能耗为:(吨标准煤).点睛:本题主要考查了回归直线方程的求解以及回归直线方程的应用,其中利用最小二乘法准确计算和的值是解答的关键,着重考查了考生的推理与运算能力.18、(1),.(2)0.【解题分析】分析:(1)先根据二项式系数性质得,解得n,再根据二项式展开式的通项公式得含x项的系数为,解得m,(2)先根据二项式展开式的通项公式得,再求的展开式有理项的系数和.详解:(1)由题意可知,,解得含项的系数为,(2)的展开项通项公式为的展开式有理项的系数和为0点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.19、(1)证明见解析;(2).【解题分析】

(1)根据传递性,由平面,得到平面平面(2)作于点,过点作,建立空间直角坐标系,求出各平面法向量后根据夹角公式求得二面角余弦值【题目详解】(1)证明:因为,,所以,又,,所以平面,又平面,所以平面平面.(2)如图,作于点,过点作,则,,两两垂直,故以为坐标原点,直线,,分别为轴、轴、轴建立如图所示空间直角坐标系.设,则,,,所以,又,所以,,,所以,,,,.因为为的中点,所以.,,令为平面的法向量,则有即不妨设,则.易知平面的一个法向量为,.因为二角为钝角,所以二面角的余弦值为.【题目点拨】本题考查面面垂直证明与二面角的求法,如何建立空间直角坐标系是解题关键20、(1)见解析;(2)见解析【解题分析】

(I)先依题意预测出高三的6次考试成绩,由平均数的公式,分别计算即可;(Ⅱ)由题意先写出随机变量的取值,以及对应的概率,即可求出分布列和期望.【题目详解】(I)由已知,预测高三的6次考试成绩如下:第1次考试第2次考试第3次考试第4次考试第5次考试第6次考试甲7886899698100乙8185929496100甲高三的6次考试平均成绩为,乙高三的6次考试平均成绩为所以预测:在将要进行的高三6次测试中,甲、乙两个学生的平均成绩分别约为91,91.(Ⅱ)因为为高三的任意一次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论