2024届益阳市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第1页
2024届益阳市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第2页
2024届益阳市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第3页
2024届益阳市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第4页
2024届益阳市重点中学数学高二下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

VIP免费下载

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届益阳市重点中学数学高二下期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设随机变量服从正态分布,若,则

=A. B. C. D.2.某高中举办了一场中学生作文竞赛活动,现决定从参赛选手中选出一等奖一名、二等奖二名、三等奖二名,通过评委会获悉在此次比赛中获奖的学生为3男2女,其中一等奖、二等奖的奖项中都有男生,请计算一下这5名学生不同的获奖可能种数为()A.12 B.15 C.18 D.213.已知函数是定义在上的奇函数,且,当时,,则()A.2 B. C.1 D.4.若实轴长为2的双曲线上恰有4个不同的点满足,其中,,则双曲线C的虚轴长的取值范围为()A. B. C. D.5.已知正项等比数列的前项和为,且,则公比的值为()A. B.或 C. D.6.设、是两条不同的直线,、是两个不同的平面,下列命题中正确的是()A.若,且,则B.若,则C.若,,则D.若,且,则7.已知,则除以9所得的余数是A.2 B.3C.5 D.78.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为形(每次旋转90°仍为形的图案),那么在个小方格组成的方格纸上可以画出不同位置的形需案的个数是()A.36 B.64 C.80 D.969.下列命题是真命题的是()A.,B.设是公比为的等比数列,则“”是“为递增数列”的既不充分也不必要条件C.“”是“”的充分不必要条件D.的充要条件是10.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.2411.设n=0π2A.20 B.-20 C.120 D.-12012.函数在处的切线与直线:垂直,则()A.3 B.3 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设为的展开式中含项的系数,为的展开式中二项式系数的和,则能使成立的的最大值是________.14.若函数为奇函数,则______.15.已知椭圆的参数方程为,则该椭圆的普通方程是_________.16.数列满足,当时,,则是否存在不小于2的正整数,使成立?若存在,则在横线处直接填写的值;若不存在,就填写“不存在”_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)甲将要参加某决赛,赛前,,,四位同学对冠军得主进行竞猜,每人选择一名选手,已知,选择甲的概率均为,,选择甲的概率均为,且四人同时选择甲的概率为,四人均末选择甲的概率为.(1)求,的值;(2)设四位同学中选择甲的人数为,求的分布列和数学期望.18.(12分)在中,角,,的对边分别为,,,点在直线上.(1)求角的值;(2)若,求的面积.19.(12分)已知函数.(1)讨论的单调性;(2)当时,若恒成立,求的取值范围.20.(12分)已知函数.(I)当时,求不等式的解集;(II)若不等式的解集为,求实数的值.21.(12分)已知函数,当时,函数有极大值8.(Ⅰ)求函数的解析式;(Ⅱ)若不等式在区间上恒成立,求实数的取值范围.22.(10分)已知10件不同产品中有3件是次品,现对它们一一取出(不放回)进行检测,直至取出所有次品为止.(1)若恰在第5次取到第一件次品,第10次才取到最后一件次品,则这样的不同测试方法数有多少?(2)若恰在第6次取到最后一件次品,则这样的不同测试方法数是多少?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:根据正态分布图像可知,故它们中点即为对称轴.详解:由题可得:,故对称轴为故选B.点睛:考查正态分布的基本量和图像性质,属于基础题.2、B【解题分析】

一等奖为男生,则从3个男生里选一个;二等奖有男生,可能是一男一女,可能是两男;剩下的即为三等奖的学生,依照分析求组合数即可【题目详解】由题可知,一等奖为男生,故;二等奖可能为2个男生或1个男生,1个女生,故故获奖可能种数为,即选B【题目点拨】本题考查利用排列组合解决实际问题,考查分类求满足条件的组合数3、B【解题分析】

由,可得,则函数是周期为8的周期函数,据此可得,结合函数的周期性与奇偶性,即可求解.【题目详解】根据题意,函数满足,则有,则函数是周期为8的周期函数,则,又由函数为奇函数,则,则,即;故选B.【题目点拨】本题主要考查了函数的奇偶性与周期性的综合应用,其中解答中根据题设条件,求得函数的周期是解答的关键,着重考查了推理与运算能力,属于基础题.4、C【解题分析】

设点,由结合两点间的距离公式得出点的轨迹方程,将问题转化为双曲线与点的轨迹有个公共点,并将双曲线的方程与动点的轨迹方程联立,由得出的取值范围,可得出答案.【题目详解】依题意可得,设,则由,得,整理得.由得,依题意可知,解得,则双曲线C的虚轴长.5、C【解题分析】

由可得,故可求的值.【题目详解】因为,所以,故,因为正项等比数列,故,所以,故选C.【题目点拨】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3)为等比数列()且公比为.6、C【解题分析】分析:对选项逐一分析即可.详解:对于A,,且,则与位置关系不确定,可能相交、平行或者异面,故A错误;对于B,,则有可能,有可能,故B错误;对于C,,,利用面面垂直的性质定理得到作垂直于交线的直线与垂直,又,得到,又,得到,,故C正确;对于D,,且,则与位置关系不确定,可能相交、平行或者异面,故D错误.故选C.点睛:本题考查线线平行、线面平行、线面垂直以及面面垂直的判断,主要考查空间立体的感知能力以及组织相关知识进行判断证明的能力,要求熟练相应的判定定理和性质定理.7、D【解题分析】

根据组合数的性质,将化简为,再展开即可得出结果.【题目详解】,所以除以9的余数为1.选D.【题目点拨】本题考查组合数的性质,考查二项式定理的应用,属于基础题.8、C【解题分析】

把问题分割成每一个“田”字里,求解.【题目详解】每一个“田”字里有个“”形,如图因为的方格纸内共有个“田”字,所以共有个“”形..【题目点拨】本题考查排列组合问题,关键在于把“要做什么”转化成“能做什么”,属于中档题.9、B【解题分析】

取特殊值来判断A选项中命题的正误,取特殊数列来判断B选项中命题的正误,求出不等式,利用集合包含关系来判断C选项命题的正误,取特殊向量来说明D选项中命题的正误.【题目详解】对于A选项,当时,,所以,A选项中的命题错误;对于B选项,若,则等比数列的公比为,但数列是递减数列,若,等比数列是递增数列,公比为,所以,“”是“为递增数列”的既不充分也不必要条件,B选项中的命题正确;对于C选项,解不等式,得或,由于,所以,“”是“”的既不充分也不必要条件,C选项中的命题错误;对于D选项,当时,,但与不一定垂直,所以,D选项中的命题错误.故选B.10、D【解题分析】试题分析:先排三个空位,形成4个间隔,然后插入3个同学,故有种考点:排列、组合及简单计数问题11、B【解题分析】

先利用微积分基本定理求出n的值,然后利用二项式定理展开式通项,令x的指数为零,解出相应的参数值,代入通项可得出常数项的值。【题目详解】∵n=0二项式x-1x6令6-2r=0,得r=3,因此,二项式x-1x6故选:B.【题目点拨】本题考查定积分的计算和二项式指定项的系数,解题的关键就是微积分定理的应用以及二项式展开式通项的应用,考查计算能力,属于中等题。12、A【解题分析】

先利用求导运算得切线的斜率,再由互相垂直的两直线的关系,求得的值。【题目详解】函数在(1,0)处的切线的斜率是,所以,与此切线垂直的直线的斜率是故选A.【题目点拨】本题考查了求导的运算法则和互相垂直的直线的关系,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解题分析】

由题意可得,An==,,若使得An≥Bn,即n(n+1)≥2n,可求.【题目详解】∵(1+x)n+1的展开式的通项为Tr+1,由题意可得,An==,又∵为的展开式中二项式系数的和,∴,∵An≥Bn,∴,即n(n+1)≥2n当n=1时,1×2≥2,满足题意;当n=2时,2×3≥22,满足题意;当n=3时,3×4≥23,满足题意;当n=4时,4×5≥24,满足题意;当n=5时,5×6<25,不满足题意,且由于指数函数比二次函数增加的快,故当n≥5时,n(n+1)<2n,∴=4.故答案为4【题目点拨】本题主要考查了二项展开式的通项公式的应用,二项展开式的性质应用及不等式、指数函数与二次函数的增加速度的快慢的应用,属于中档题.14、1【解题分析】

由函数在时有意义,且为奇函数,由奇函数的性质可得,求出再代入求解即可.【题目详解】解:因为函数为奇函数,所以,即,所以,所以,故答案为:.【题目点拨】本题考查了函数的奇偶性,重点考查了奇函数的性质,属基础题.15、【解题分析】

利用公式即可得到结果【题目详解】根据题意,解得故答案为【题目点拨】本题主要考查的是椭圆的参数方程,解题的关键是掌握,属于基础题16、70【解题分析】

构造数列,两式与相减可得数列{}为等差数列,求出,让=0即可求出.【题目详解】设两式相减得又数列从第5项开始为等差数列,由已知易得均不为0所以当n=70的时候成立,故答案填70.【题目点拨】如果递推式中出现和的形式,比如,可以尝试退项相减,即让取后,两式作差,和的部分因为相减而抵消,剩下的就好算了。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)的分布列见解析;数学期望为2【解题分析】

(1)根据题意,利用相互独立事件概率计算公式列出关于的方程组,即可求解出答案.(2)根据题意先列出随机变量的所有可能取值,然后根据独立重复事件的概率计算公式得出各自的概率,列出分布列,最后根据数学期望的计算公式求解出结果.【题目详解】解:(1)由已知可得解得(2)可能的取值为0,1,2,3,4,,,,,.的分布列如下表:01234.【题目点拨】本题主要考查逆用相互独立事件概率计算公式求解概率问题以及离散型随机变量的分布列和期望的求解.18、(1);(2)【解题分析】

(1)代入点到直线的方程,根据正弦定理完成角化边,对比余弦定理求角;(2)将等式化简成“平方和为零”形式,计算出的值,利用面积公式计算的面积.【题目详解】解:(1)由题意得,由正弦定理,得,即,由余弦定理,得,结合,得.(2)由,得,从而得,所以的面积.【题目点拨】本题考查正、余弦定理的简单应用,难度较易.使用正弦定理进行角化边或者边化角的过程时,一定要注意“齐次”的问题.19、(1)见解析(2)【解题分析】

(1)先求得函数的导函数,然后根据三种情况,讨论的单调性.(2)由题可知在上恒成立,构造函数,利用导数研究的单调性和最值,对分成两种进行分类讨论,根据在上恒成立,求得的取值范围.【题目详解】(1),当时,令,得,令,得或,所以在上单调递增,在上单调递减.当时,在上单调递增.当时,令,得,令,得或,所以在上单调递减,在上单调递增.(2)由题可知在上恒成立,令,则,令,则,所以在上为减函数,.当时,,即在上为减函数,则,所以,即,得.当时,令,若,则,所以,所以,又,所以在上有唯一零点,设为,在上,,即单调递增,在上,,即单调递减,则的最大值为,所以恒成立.由,得,则.因为,所以,由,得.记,则,所以在上是减函数,故.综上,的取值范围为.【题目点拨】本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒成立问题,考查分类讨论的数学思想方法,考查化归与转化的数学思想方法,属于难题.20、(I)或;(II)2.【解题分析】

(I)代入a的值,求出不等式的解集即可;(II)解不等式,根据对应关系得到关于a的方程组,解出即可.【题目详解】(I)当时,由,得或,解得:或,故不等式的解集是或.(II),,又不等式的解集为,,解得.【题目点拨】本题考查了解绝对值不等式问题,考查转化思想,方程思想,是一道基础题.21、(I)(II)【解题分析】

(Ⅰ)求导,当时,导函数为0,原函数为8,联立方程解得(Ⅱ)参数分离,设,求在区间上的最大值得到答案.【题目详解】(I)∵当时,函数有极大值8∴,解得∴所以函数的解析式为.(II)∵不等式在区间上恒成立∴在区间上恒成立令,则由解得,解得所以当时,单调递增,当时,单调递减所以对,都有,所以,即实数的取值范围是.【题目点拨】本题考查了极值的性质,参数分离,恒成立问题,将恒成立问题转化为最值问题是解题的关键.22、(1);(2).【解题分析】

(1)根据题意,分析可得前4次取出的都

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论