福建省三明市普通高中2024届数学高二下期末监测试题含解析_第1页
福建省三明市普通高中2024届数学高二下期末监测试题含解析_第2页
福建省三明市普通高中2024届数学高二下期末监测试题含解析_第3页
福建省三明市普通高中2024届数学高二下期末监测试题含解析_第4页
福建省三明市普通高中2024届数学高二下期末监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省三明市普通高中2024届数学高二下期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如果函数在上的图象是连续不断的一条曲线,那么“”是“函数在内有零点”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件2.在二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr2;在三维空间中,球的二维测度(表面积)S=4πr2,三维测度(体积)V=4A.4πr4 B.3πr43.用数学归纳法证明(,)时,第一步应验证()A. B. C. D.4.抛物线的焦点到双曲线的渐近线的距离为()A. B. C.1 D.5.函数的单调递增区间是()A. B. C. D.6.设平面向量,则与垂直的向量可以是()A. B. C. D.7.把一枚骰子连续掷两次,已知在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为()A. B. C. D.8.已知.则()A. B. C. D.9.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A.1 B.2C.3 D.410.设在定义在上的偶函数,且,若在区间单调递减,则()A.在区间单调递减 B.在区间单调递增C.在区间单调递减 D.在区间单调递增11.欧拉公式(i为虚数单位)是由著名数学家欧拉发明的,他将指数函数定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式,若将表示的复数记为z,则的值为()A. B. C. D.12.已知随机变量服从的分布列为123…nP…则的值为()A.1 B.2 C. D.3二、填空题:本题共4小题,每小题5分,共20分。13.高二(1)班有男生18人,女生12人,现用分层抽样的方法从该班的全体同学中抽取一个容量为5的样本,则抽取的男生人数为____.14.若椭圆上的点到焦点的距离的最小值为5,最大值为15,则椭圆短轴长为____________.15.复数z=2-i16.袋中装有4个黑球,3个白球,甲乙按先后顺序无放回地各摸取一球,在甲摸到了黑球的条件下,乙摸到白球的概率是_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(且,e为自然对数的底数.)(1)当时,求函数在处的切线方程;(2)若函数只有一个零点,求a的值.18.(12分)某理科考生参加自主招生面试,从道题中(道甲组题和道乙组题)不放回地依次任取道作答.(1)求该考生在第一次抽到甲组题的条件下,第二次和第三次均抽到乙组题的概率;(2)规定理科考生需作答道甲组题和道乙组题,该考生答对甲组题的概率均为,答对乙组题的概率均为,若每题答对得,否则得零分.现该生已抽到道题(道甲组题和道乙组题),求其所得总分的分布列与数学期望.19.(12分)已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.(1)求M∩P={x|5<x≤8}的充要条件;(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.20.(12分)已知椭圆C的中心在坐标原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线与椭圆C相交于A、B两点,在y轴上是否存在点D,使直线AD与BD关于y轴对称?若存在,求出点D坐标;若不存在,请说明理由.21.(12分)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.22.(10分)第届冬季奥林匹克运动会,将在年月日至日在北京和张家口联合举行.某研究机构为了解中学生对冰壶运动的兴趣,随机从某中学学生中抽取人进行了问卷调查,其中男、女生各人,将问卷得分情况制成茎叶图如右图:(Ⅰ)将得分不低于分的称为“A类”调查对象,某研究机构想要进一步了解“A类”调查对象的更多信息,从“A类”调查对象中抽取人,设被抽到的女生人数为,求的分布列及数学期望;(Ⅱ)通过问卷调查,得到如下列联表.完成列联表,并说明能否有的把握认为是否为“A类”调查对象与性别有关?不是“A类”调查对象是“A类”调查对象总计男女总计附参考公式与数据:,其中.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

由零点存在性定理得出“若,则函数在内有零点”举反例即可得出正确答案.【题目详解】由零点存在性定理可知,若,则函数在内有零点而若函数在内有零点,则不一定成立,比如在区间内有零点,但所以“”是“函数在内有零点”的充分而不必要条件故选:A【题目点拨】本题主要考查了充分不必要条件的判断,属于中档题.2、B【解题分析】

根据所给的示例及类比推理的规则得出,高维度的测度的导数是低一维的测度,从而得到W'【题目详解】由题知,S'=l,V'=S所以W=3πr4,故选【题目点拨】本题主要考查学生的归纳和类比推理能力。3、B【解题分析】

直接利用数学归纳法写出时左边的表达式即可.【题目详解】解:用数学归纳法证明,时,第一步应验证时是否成立,即不等式为:;故选:.【题目点拨】在数学归纳法中,第一步是论证时结论是否成立,此时一定要分析不等式左边的项,不能多写也不能少写,否则会引起答案的错误.4、B【解题分析】抛物线的焦点为:,双曲线的渐近线为:.点到渐近线的距离为:.故选B.5、C【解题分析】

先求得函数的定义域,然后利用导数求得函数的单调递增区间.【题目详解】依题意,函数的定义域为,,故当时,,所以函数的单调递增区间为,故选C.【题目点拨】本小题主要考查利用导数求函数的单调递增区间,考查导数的运算,属于基础题.6、D【解题分析】分析:先由平面向量的加法运算和数乘运算得到,再利用数量积为0进行判定.详解:由题意,得,因为,,,,故选D.点睛:本题考查平面向量的坐标运算、平面向量垂直的判定等知识,意在考查学生的逻辑思维能力和基本计算能力.7、C【解题分析】分析:设表示“第一次抛出的是奇数点”,表示“第二次抛出的是奇数点”,利用古典概型概率公式求出的值,由条件概率公式可得结果.详解:设表示“第一次抛出的是奇数点”,表示“第二次抛出的是奇数点”,,,在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为,故选C.点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用,同时注意区分独立事件同时发生的概率与条件概率的区别与联系.8、C【解题分析】

由二项式定理及利用赋值法即令和,两式相加可得,结合最高次系数的值即可得结果.【题目详解】中,取,得,取,得,所以,即,又,则,故选C.【题目点拨】本题主要考查了二项式定理及利用赋值法求二项式展开式的系数,属于中档题.9、C【解题分析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.10、D【解题分析】

根据题设条件得到函数是以2为周期的周期函数,同时关于对称的偶函数,根据对称性和周期性,即可求解.【题目详解】由函数满足,所以是周期为2的周期函数,由函数在区间单调递减,可得单调递减,所以B不正确;由函数在定义在上的偶函数,在区间单调递减,可得在区间单调递增,所以A不正确;又由函数在定义在上的偶函数,则,即,所以函数的图象关于对称,可得在区间单调递增,在在区间单调递增,所以C不正确,D正确,故选D.【题目点拨】本题主要考查了函数的单调性与对称性的应用,以及函数的周期性的判定,着重考查了推理与运算能力,属于基础题.11、A【解题分析】

根据欧拉公式求出,再计算的值.【题目详解】∵,∴.故选:A.【题目点拨】此题考查复数的基本运算,关键在于根据题意求出z.12、A【解题分析】

由概率之和为1,列出等式,即可求得k值.【题目详解】由概率和等于1可得:,即.故选A.【题目点拨】本题考查分布列中概率和为1,由知识点列式即可得出结论.二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】

根据分层抽样的比例求得.【题目详解】由分层抽样得抽取男生的人数为5×18故得解.【题目点拨】本题考查分层抽样,属于基础题.14、【解题分析】

由题意得到关于a,b的方程组,求解方程组即可确定椭圆的短轴长度.【题目详解】不妨设椭圆方程为:,由题意可得,解得,则椭圆的短轴长度为:.故答案为:.【题目点拨】本题主要考查椭圆的几何性质,方程的数学思想,椭圆短轴的定义与计算等知识,意在考查学生的转化能力和计算求解能力.15、2-【解题分析】试题分析::z=2-i3=考点:复数代数形式的乘除运算.16、.【解题分析】分析:结合古典概型概率公式,直接利用条件概率公式求解即可详解:设甲摸到黑球为事件,则,乙摸到白球为事件,则,设甲摸到黑球的条件下,乙摸到球的概率为,故答案为.点睛:本题主要考查古典概型概率公式以及独立事件的概率公式,条件概率公式,意在考查综合运用所学知识解答问题的能力,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)代入,得,所以,求出,由直线方程的点斜式,即可得到切线方程;(2)分和两种情况,考虑函数的最小值,令最小值等于0,即可得到a的值.【题目详解】解:(1)当时,,,,∴切线方程为;(2),,令,得,1)当时,,x-0+极小值所以当时,有最小值,.因为函数只有一个零点,且当和时,都有,所以,即,因为当时,,所以此方程无解.2)当时,,x-0+极小值所以当时,有最小值,.因为函数只有一个零点,且当和时,都有,所以,即()(*),设(),则,令,得,当时,;当时,;所以当时,,所以方程(*)有且只有一解.综上,时函数只有一个零点.【题目点拨】本题主要考查在曲线上一点的切线方程的求法,以及利用导数研究含参函数的零点问题,考查学生的运算求解能力,体现了分类讨论的数学思想.18、(1);(2)见解析.【解题分析】分析:(1)利用条件概率公式,即可求得该考生在第一次抽到甲组题的条件下,第二次和第三次均抽到乙组题的概率;(2)先明确X的可能取值,求出相应的概率值,得到的分布列,进而得到数学期望详解:(1)记“该考生在第一次抽到甲组题”为事件A,“该考生第二次和第三次均抽到乙组题”为事件B,则所以该考生在第一次抽到甲组题的条件下,第二次和第三次均抽到乙组题的概率为(2)X的可能取值为:0,10,20,30,则,,,的分布列为X0102030P的数学期望为点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是:“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(E(X)=np)求得.19、(1);(2)【解题分析】

(1)根据两个集合的交集为,可知,即充要条件就是.(2)由(1)可知,要找充分不必要条件,即是在找一个值,都是符合题意的值.【题目详解】(1)由M∩P={x|5<x≤8},得-3≤a≤5,因此M∩P={x|5<x≤8}的充要条件是-3≤a≤5;(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件,就是在集合{a|-3≤a≤5}中取一个值,如取a=0,此时必有M∩P={x|5<x≤8};反之,M∩P={x|5<x≤8}未必有a=0,故a=0是M∩P={x|5<x≤8}的一个充分不必要条件.【题目点拨】本小题主要考查利用集合的交集来求解参数的取值范围,考查找充分不必要条件的方法,属于中档题.20、(1);(2)见解析.【解题分析】分析:(1)由题意得,求解即可;(2)假设存在点满足条件,则,设,,,联立方程,从而可得,又由,得,从而求得答案.详解:(Ⅰ)由题意,设椭圆方程为,则有,解得,所以椭圆C的方程为.(Ⅱ)假设存在点满足条件,则.设,,,联立方程,得,,,由,得,即,综上所述,存在点,使直线AD与BD关于y轴对称.点睛:对题目涉及的变量巧妙的引进参数,利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果,直接得结果.21、(1)见解析(2)【解题分析】

(1)先证平面CMD,得,再证,进而完成证明.(2)先建立空间直角坐标系,然后判断出的位置,求出平面和平面的法向量,进而求得平面与平面所成二面角的正弦值.【题目详解】解:(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论