




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省宾川县第四高级中学数学高二第二学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.执行如图所示的程序框图,如果输入n=3,输出的S=()A. B. C. D.2.命题:,成立的一个充分但不必要条件为()A. B.C. D.3.若,,则()A. B. C. D.4.已知函数f(x)=2x-1,(a∈R),若对任意x1∈[1,+∞),总存在x2∈R,使f(x1)=g(x2),则实数a的取值范围是()A. B. C. D.5.已知为虚数单位,则复数对应复平面上的点在第()象限.A.一 B.二 C.三 D.四6.下列命题不正确的是()A.研究两个变量相关关系时,相关系数r为负数,说明两个变量线性负相关B.研究两个变量相关关系时,相关指数R2越大,说明回归方程拟合效果越好.C.命题“∀x∈R,cosx≤1”的否定命题为“∃x0∈R,cosx0>1”D.实数a,b,a>b成立的一个充分不必要条件是a3>b37.已知等差数列前9项的和为27,,则A.100 B.99 C.98 D.978.已知x1+i=1-yi,其中x,y是实数,i是虚数单位,则x+yiA.1+2iB.1-2iC.2+iD.2-i9.设,则二项式展开式的常数项是()A.1120 B.140 C.-140 D.-112010.曲线与直线围成的平面图形的面积为()A. B. C. D.11.已知函数在上单调递减,则的取值范围是()A. B. C. D.12.z是z的共轭复数,若z+z=2,(z-zA.1+i B.-1-i C.-1+i D.1-i二、填空题:本题共4小题,每小题5分,共20分。13.设函数可导,若,则__________.14.在四面体中,,已知,,且,则四面体的体积的最大值为_______.15.已知,为锐角,,,则的值为________.16.5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)总书记在十九大报告中指出,必须树立和践行“绿水青山就是金山银山”的生态文明发展理念,某城市选用某种植物进行绿化,设其中一株幼苗从观察之日起,第x天的高度为ycm,测得一些数据图如下表所示:第x度y/cm0479111213作出这组数的散点图如下(1)请根据散点图判断,与中哪一个更适宜作为幼苗高度y关于时间x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程,并预测第144天这株幼苗的高度(结果保留1位小数).附:,参考数据:140285628318.(12分)已知函数(a∈R).(1)讨论y=f(x)的单调性;(2)若函数f(x)有两个不同零点x1,x2,求实数a的范围并证明.19.(12分)如图,已知三棱柱的侧棱与底面垂直,,分别是的中点.(1)求异面直线与所成角的余弦值;(2)求二面角的余弦值.20.(12分)高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.(Ⅰ)理论上,小球落入4号容器的概率是多少?(Ⅱ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为,求的分布列与数学期望.21.(12分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程是(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点分别在,上运动,若的最小值为2,求的值.22.(10分)[选修4-4:坐标系及参数方程]已知曲线的参数方程为(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程及曲线上的动点到坐标原点的距离的最大值;(2)若曲线与曲线相交于,两点,且与轴相交于点,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
试题分析:由题意得,输出的为数列的前三项和,而,∴,故选B.考点:1程序框图;2.裂项相消法求数列的和.【名师点睛】本题主要考查了数列求和背景下的程序框图问题,属于容易题,解题过程中首先要弄清程序框图所表达的含义,解决循环结构的程序框图问题关键是列出每次循环后的变量取值情况,循环次数较多时,需总结规律,若循环次数较少可以全部列出.2、A【解题分析】
命题p的充分不必要条件是命题p所成立的集合的真子集,利用二次函数的性质先求出p成立所对应的集合,即可求解.【题目详解】由题意,令是一个开口向上的二次函数,所以对x恒成立,只需要,解得,其中只有选项A是的真子集.故选A.【题目点拨】本题主要考查了充分不必要条件的应用,以及二次函数的性质的应用,其中解答中根据二次函数的性质,求得实数的取值范围是解答的关键,着重考查了推理与运算能力,属于基础题.3、A【解题分析】分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,然后利用复数相等的性质列方程求解即可.详解:因为,所以,解得,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.4、C【解题分析】
对a分a=0,a<0和a>0讨论,a>0时分两种情况讨论,比较两个函数的值域的关系,即得实数a的取值范围.【题目详解】当a=0时,函数f(x)=2x-1的值域为[1,+∞),函数的值域为[0,++∞),满足题意.当a<0时,y=的值域为(2a,+∞),y=的值域为[a+2,-a+2],因为a+2-2a=2-a>0,所以a+2>2a,所以此时函数g(x)的值域为(2a,+∞),由题得2a<1,即a<,即a<0.当a>0时,y=的值域为(2a,+∞),y=的值域为[-a+2,a+2],当a≥时,-a+2≤2a,由题得.当0<a<时,-a+2>2a,由题得2a<1,所以a<.所以0<a<.综合得a的范围为a<或1≤a≤2,故选C.【题目点拨】本题主要考查函数的图象和性质,考查指数函数和三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.5、D【解题分析】分析:首先化简所给的复数,然后确定复数所在的象限即可.详解:由题意可得:,则复数对应的点为,该点位于第四象限,即复数对应复平面上的点在第四象限.本题选择D选项.点睛:本题主要考查复数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.6、D【解题分析】
根据相关系数、相关指数的知识、全称命题的否定的知识,充分、必要条件的知识对四个选项逐一分析,由此得出命题不正确的选项.【题目详解】相关系数为负数,说明两个变量线性负相关,A选项正确.相关指数越大,回归方程拟合效果越好,B选项正确.根据全称命题的否定是特称命题的知识可知C选项正确.对于D选项,由于,所以是的充分必要条件,故D选项错误.所以选D.【题目点拨】本小题主要考查相关系数、相关指数的知识,考查全称命题的否定是特称命题,考查充要条件的判断,属于基础题.7、C【解题分析】试题分析:由已知,所以故选C.【考点】等差数列及其运算【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.8、D【解题分析】∵x1+i=x(1-i)9、A【解题分析】
分析:利用微积分基本定理求得,先求出二项式的展开式的通项公式,令的指数等于,求出的值,即可求得展开式的常数项.详解:由题意,二项式为,设展开式中第项为,,令,解得,代入得展开式中可得常数项为,故选A.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.10、D【解题分析】
先作出直线与曲线围成的平面图形的简图,联立直线与曲线方程,求出交点横坐标,根据定积分即可求出结果.【题目详解】作出曲线与直线围成的平面图形如下:由解得:或,所以曲线与直线围成的平面图形的面积为.故选D【题目点拨】本题主要考查定积分的应用,求围成图形的面积只需转化为对应的定积分问题求解即可,属于常考题型.11、A【解题分析】
等价于在上恒成立,即在上恒成立,再构造函数并求g(x)的最大值得解.【题目详解】在上恒成立,则在上恒成立,令,,所以在单调递增,故g(x)的最大值为g(3)=.故.故选A【题目点拨】本题主要考查利用导数研究函数的单调性,考查利用导数研究不等式的恒成立问题,属于基础题.12、D【解题分析】试题分析:设z=a+bi,z=a-bi,依题意有2a=2,-2b=2,故考点:复数概念及运算.【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】
根据导数的定义求解.【题目详解】因为,所以,即,故.【题目点拨】本题考查导数的定义.14、【解题分析】
作与,连接,说明与都在以为焦点的椭球上,且都垂直与焦距,,取BC的中点F,推出当是等腰直角三角形时几何体的体积最大,求解即可.【题目详解】解:作与,连接,则平面,,由题意,与都在以为焦点的椭球上,且都垂直与焦距且垂足为同一点E,显然与全等,所以,取BC的中点F,,要四面体ABCD的体积最大,因为AD是定值,只需三角形EBC面积最大,因为BC是定值,所以只需EF最大即可,当是等腰直角三角形时几何体的体积最大,,,,所以几何体的体积为:,故答案为:.【题目点拨】本题考查棱锥的体积,考查空间想象能力以及计算能力,是中档题.15、【解题分析】试题分析:依题意,所以,所以.考点:三角恒等变换.16、240.【解题分析】
先把5本书取出两本看做一个元素,这一元素和其他的三个元素分给四个同学,相当于在四个位置全排列,根据分步乘法计数原理即可得出结果.【题目详解】从5本书中取出两本看做一个元素共有种不同的取法,这一元素与其他三个元素分给四个同学共有种不同的分法,根据分步乘法计数原理,共有种不同的分法.故答案为:240【题目点拨】本题主要考查了排列组合的综合应用,分步乘法计数原理,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)更适宜作为幼苗高度y关于时间x的回归方程类型;(2);预测第144天幼苗的高度大约为24.9cm.【解题分析】
(1)根据散点图,可直接判断出结果;(2)先令,根据题中数据,得到与的数据对,根据新的数据对,求出,,再由最小二乘法求出,即可得出回归方程,从而可求出预测值.【题目详解】解:(1)根据散点图,更适宜作为幼苗高度y关于时间x的回归方程类型;(2)令,则构造新的成对数据,如下表所示:x149162536491234567y0479111213容易计算,,.通过上表计算可得:因此∵回归直线过点(,),∴,故y关于的回归直线方程为从而可得:y关于x的回归方程为令x=144,则,所以预测第144天幼苗的高度大约为24.9cm.【题目点拨】本题主要考查非线性回归方程,先将问题转化为线性回归方程,根据最小二乘法求出参数的估计值,即可得出结果,属于常考题型.18、(1)见解析;(2),证明见解析【解题分析】
(1)先求得函数的单调区间,然后求函数的导数,对分成两种情况,分类讨论函数的单调区间.(2)令,分离常数,构造函数,利用导数求得的单调区间和最大值,结合图像求得的取值范围.构造函数(),利用导数证得在成立,从而证得在上成立.根据的单调性证得.【题目详解】函数的定义域为当时,,函数在上为增函数;当时,,,有,在有,即,综上:当时,函数在上为增函数;当时,.(2)有两个不同的零点,即有两个不同的根,即即有两个不同的交点;,,,当时,故.由上设令()当时,,故在上为增函数,,从而有,即,而则,又因为所以,又,,故,即证.【题目点拨】本小题主要考查利用导数研究函数的单调区间和最值,考查利用导数研究零点问题,考查利用导数证明不等式,综合性很强,属于难题.19、(1);(2).【解题分析】
(1)以分别为轴建立空间直角坐标系,计算直线对应向量,根据向量夹角公式得到答案.(2)分别计算两个平面的法向量,利用法向量的夹角计算二面角余弦值.【题目详解】(1)如图,以分别为轴建立空间直角坐标系,则,,异面直线与所成角的余弦值为.(2)平面的一个法向量为.设平面的一个法向量为,由得,,不妨取则,,,二面角的余弦值为.【题目点拨】本题考查了空间直角坐标系的应用,求异面直线夹角和二面角,意在考查学生的计算能力和空间想象能力.20、(Ⅰ);(Ⅱ)的分布列见解析,数学期望是【解题分析】
(Ⅰ)若要小球落入4号容器,则在通过的四层中有三层需要向右,一层向左
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年司法考试合同法总则与分则关键法条梳理完毕
- 《2025年终止合同的条件与补偿标准》
- 证券分析与咨询AI应用企业制定与实施新质生产力项目商业计划书
- 创意礼品定制店行业跨境出海项目商业计划书
- 互联网保险比价平台行业深度调研及发展项目商业计划书-20250408-160251
- 高精度直流标准源行业深度调研及发展项目商业计划书
- 新能源汽车充电基础设施投资策略:2025年充电站智能充电系统研发报告
- 2025年绿色金融债券发行环境评估与投资价值研究报告
- 宠物食品广告市场细分需求与广告产品创新分析报告
- 建材市场可行性报告
- 胆石症病人的护理
- 四川省成都市2024年小升初英语试卷(含答案)
- 建筑施工安全生产标准化指导图册
- 渠道衬砌施工方案(渠道预制混凝土块)
- 2024年新课标高考政治真题试卷含答案
- 02S515排水检查井图集
- 《糖的变化(含练习)》参考课件
- DL∕T 5344-2018 电力光纤通信工程验收规范
- T-CCIIA 0004-2024 精细化工产品分类
- T-CHEAA 0011.11-2024 家用电器安全使用年限 第11部分:电饭锅
- 3d打印项目计划书
评论
0/150
提交评论