苏教版-6.7-用相似三角形解决问题-同步练习_第1页
苏教版-6.7-用相似三角形解决问题-同步练习_第2页
苏教版-6.7-用相似三角形解决问题-同步练习_第3页
苏教版-6.7-用相似三角形解决问题-同步练习_第4页
苏教版-6.7-用相似三角形解决问题-同步练习_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

6.7用相似三角形解决问题一.选择题(共12小题)1.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m2.数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米 B.28米 C.24米 D.16米3.如图,某同学拿着一把12cm长的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60cm,则电线杆的高度是()A.2.4m B.24m C.0.6m D.6m4.如图为一座房屋屋架结构示意图,已知屋檐AB=BC,横梁EF∥AC,点E为AB的中点,且BD⊥EF,屋架高BD=4m,横梁AC=12m,则支架DF长为()A.210 B.25 C.13 D.2135.如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.100cm2 B.150cm2 C.170cm2 D.200cm26.小亮利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是他剪裁出的空心等边三角形、正方形、矩形、正五边形,若每个图案花边的宽度都相等,那么每个图案中花边的内外边缘所围成的几何图形不相似的是()A.B.C.D.7.如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为()A.4m B.245m C.5m D.168.如图,有一块三角形土地,它的底边BC=100米,高AH=80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,则这座大楼的地基面积最大值是()A.1000米2 B.2000米2 C.3000米2 D.4000米29.如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足PM:PQ=3:2,则PM的长为()A.60mm B.16013mm C.20mm D.24010.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中第九卷《勾股》章,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)你的计算结果是:出南门几何步而见木()A.300步 B.315步 C.400步 D.415步11.相邻两根电杆都用钢索在地面上固定,如图,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P离地面()A.2.4米 B.8米 C.3米 D.必须知道两根电线杆的距离才能求出点P离地面距离12.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的是()①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为25;⑤当△ABP≌△ADN时,BP=42-A.①③④ B.①②⑤ C.①②③ D.②④⑤二.填空题(共12小题)13.如图,身高1.5m的小波站在操场上,测得其影长B′C′=1.8m;同时测得旗杆AB的影长BC=18m,则旗杆AB的高度为m.14.如图,△ABC是一块锐角三角形材料,边BC=30cm,高AD=20cm,要把它加工成一个矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB,AC上,要使矩形EGHF的面积最大,EF的长应为cm.15.如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为.16.用杠杆撬石头的示意图如图所示,P是支点,当用力压杠杆的A端时,杠杆绕P点转动,另一端B向上翘起,石头就被撬动.现有一块石头要使其滚动,杠杆的B端必须向上翘起8cm,已知杠杆的动力臂AP与阻力臂BP之比为4:1,要使这块石头滚动,至少要将杠杆的A端向下压cm.17.如图,两根竖直的电线杆AB长为12,CD长为4,AD交BC于点E,则点E到地面的距离EF的长是.18.我国古代数学著作中记载了一个问题:“今有邑方不知大小,各开中门,出北门二十步有木,出西门四十五步见木,问:邑方几何?”其大意是:一座正方形城池,西、北边正中各开一道门,从北门往正北方向走20步后刚好有一树木,若从西门往正西方向走45步后正好看到树木,则正方形城池的边长为步.19.利用标杆CD测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E.若标杆CD的高为1.5米,测得DE=2米,BD=16米,则建筑物的高AB为米.20.如图,一位同学通过调整自己的位置,设法使三角板DEF的斜边DF保持水平,并且边DE与点B在同一直线上,已知两条边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB为m.21.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD=2,则AB的长是.22.如图,电线杆上的路灯距离地面8m,身高1.6m的小明(AB)站在距离电线杆的底部(点O)20m的A处,则小明的影子AM长为m.23.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这些结论中正确的有(只填序号)24.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是2.其中正确的是.(把你认为正确结论的序号都填上)三.解答题(共6小题)25.某班在学习《利用相似三角形测高》时开展了“测量学校操场上旗杆的高度”的活动.小明将镜子放在离旗杆32m的点C处(即AC=32m),然后沿直线AC后退,在点D处恰好看到旗杆顶端B在镜子中的像与镜子上的标记重合(如图),根据物理学知识可知:法线l⊥AD,∠1=∠2.若小明的眼睛离地面的高度DE为1.5m,CD=3m,求旗杆AB的高度.(要有证明过程,再求值)26.如图,一块材料的形状是锐角三角形ABC,边BC长13cm,BC边上的高AD为6cm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长.27.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,DE=40cm,测得边DF离地面的高度AC=1.5m,CD=12m,求树高AB.28.AD是△ABC的中线,G是AD上任意一点时(点G不与A重合),过点G的直线交边AB于E,交射线AC于点F,设AE=xAB,AF=yAC(x、y≠0).(1)如图1,若点G与D重合,△ABC为等边三角形,且∠BDE=30°,证明:△AEF∽△DEA;(2)如图2,若点G与D重合,证明:1x(3)如图3,若AG=nAD,x=12,y=329.已知不等臂跷跷板AB长为3米.跷跷板AB的支撑点O到地面的点H的距离OH=0.6米.当跷跷板AB的一个端点A碰到地面时(如图1),AB与直线AH的夹角∠OAH的度数为30°.(1)当AB的另一个端点B碰到地面时(如图2),跷跷板AB与直线BH的夹角∠ABH的正弦值是多少?(2)当AB的另一个端点B碰到地面时(如图2),点A到直线BH的距离是多少米?30.已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC.在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D不重合),且∠PCQ=30°.(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;(2)当点P在射线BA上时,设BP=x,CQ=y,求y关于x的函数解析式及定义域;(3)联结PQ,直线PQ与直线BC交于点E,如果△QCE与△BCP相似,求线段BP的长.一.选择题(共12小题)1.如图所示,某校数学兴趣小组利用标杆BE测量建筑物的高度,已知标杆BE高1.5m,测得AB=1.2m,BC=12.8m,则建筑物CD的高是()A.17.5m B.17m C.16.5m D.18m【分析】根据题意和图形,利用三角形相似,可以计算出CD的长,从而可以解答本题.【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴ABAC∵BE=1.5m,AB=1.2m,BC=12.8m,∴AC=AB+BC=14m,∴1.214解得,DC=17.5,即建筑物CD的高是17.5m,故选:A.【点评】本题考查相似三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.2.数学兴趣小组的同学们来到宝安区海淀广场,设计用手电来测量广场附近某大厦CD的高度,如图,点P处放一水平的平面镜.光线从点A出发经平面镜反射后刚好射到大厦CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1米,BP=1.5米,PD=48米,那么该大厦的高度约为()A.32米 B.28米 C.24米 D.16米【分析】因同学和大厦均和地面垂直,且光线的入射角等于反射角,因此构成一组相似三角形,利用对应边成比例即可解答.【解答】解:根据题意,易得到△ABP∽△PDC.即CD故CD=PDBP×那么该大厦的高度是32米.故选:A.【点评】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.3.如图,某同学拿着一把12cm长的尺子,站在距电线杆30m的位置,把手臂向前伸直,将尺子竖直,看到尺子恰好遮住电线杆,已知臂长60cm,则电线杆的高度是()A.2.4m B.24m C.0.6m D.6m【分析】先求出△ABC∽△AEF,再根据三角形对应高的比等于对应边的比,这样就可以求出电线杆EF的高.【解答】解:作AN⊥EF于N,交BC于M,∵BC∥EF,∴AM⊥BC于M,∴△ABC∽△AEF,∴BCEF∵AM=0.6,AN=30,BC=0.12,∴EF=BC⋅ANAM=故选:D.【点评】此题主要考查了相似三角形的应用,解答时利用了相似三角形对应高的比等于对应边的比解题.4.如图为一座房屋屋架结构示意图,已知屋檐AB=BC,横梁EF∥AC,点E为AB的中点,且BD⊥EF,屋架高BD=4m,横梁AC=12m,则支架DF长为()A.210 B.25 C.13 D.213【分析】直接利用等腰三角形的性质得出AD=DC,再利用勾股定理得出AB的长,进而利用三角形中位线的性质得出答案.【解答】解:∵AB=BC,BD⊥EF,∴AD=DC=6m,∴AB=AD2+BD∵EF∥AC,∴△BEF∽△BAC,∴BEAB∵点E为AB的中点,∴F是BC的中点,∴FD是△ABC的中位线,∴DF=12AB=13故选:C.【点评】此题主要考查了相似三角形的应用以及等腰三角形的性质,正确得出AB的长是解题关键.5.如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A.100cm2 B.150cm2 C.170cm2 D.200cm2【分析】设AF=x,根据正方形的性质用x表示出EF、CF,证明△AEF∽△ABC,根据相似三角形的性质求出BC,根据勾股定理列式求出x,根据三角形的面积公式、正方形的面积公式计算即可.【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴EFBC∴BC=6x,在Rt△ABC中,AB2=AC2+BC2,即302=(3x)2+(6x)2,解得,x=25,∴AC=65,BC=125,∴剩余部分的面积=12×125×65-45×故选:A.【点评】本题考查的是相似三角形的应用、正方形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.6.小亮利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是他剪裁出的空心等边三角形、正方形、矩形、正五边形,若每个图案花边的宽度都相等,那么每个图案中花边的内外边缘所围成的几何图形不相似的是()A. B. C. D.【分析】根据相似图形的定义,结合图形,对选项一一分析,排除不符合要求答案.【解答】解:A:两个等边三角形形状相同,符合相似形的定义,故A选项不符合要求;B:两个正方形形状相同,符合相似形的定义,故B选项不符合要求;C:两个矩形,虽然四个角对应相等,但对应边不成比例,故C选项符合要求;D:两个正五边形形状相同,符合相似形的定义,故D选项不符合要求;故选:C.【点评】本题考查的是相似图形的概念,把形状相同的图形称为相似形.7.如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为()A.4m B.245m C.5m D.16【分析】根据已知易得△ABM∽△DCM,可得对应高BH与HD之比,易得MH∥AB,可得△MDH∽△ADB,利用对应边成比例可得比例式,把相关数值代入求解即可.【解答】解:∵AB∥CD,∴△ABM∽△DCM,∴BHHC∵MH∥AB,∴△MCH∽△ACB,∴MHAB∴MH8解得MH=24故选:B.【点评】此题主要考查了相似三角形的应用;用到的知识点为:平行于三角形一边的直线与三角形另两边相交,截得的两三角形相似;相似三角形的对应边成比例;对应高的比等于相似比;解决本题的突破点是得到BH与HD的比.8.如图,有一块三角形土地,它的底边BC=100米,高AH=80米,某单位要沿着底边BC修一座底面是矩形DEFG的大楼,则这座大楼的地基面积最大值是()A.1000米2 B.2000米2 C.3000米2 D.4000米2【分析】两三角形相似,对应高之比等于相似比.利用此性质即可解答.【解答】解:∵DG∥BC∴△ADG∽△ABC它们的对应高线比等于对应线段的比,即AMAH=DGBC,设AM=x,那么DE=MH=AH﹣∴x80∴DG=5∴S四边形DEFG=DG•DE=(80﹣x)•54x=54(﹣x2+80x﹣1600)=-54当x=40时,S取最大值,最大值为2000,故选:B.【点评】本题考查相似三角形的应用、二次函数的应用、矩形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.9.如图,有一块三角形余料ABC,BC=120mm,高线AD=80mm,要把它加工成一个矩形零件,使矩形的一边在BC上,点P,M分别在AB,AC上,若满足PM:PQ=3:2,则PM的长为()A.60mm B.16013mm C.20mm D.240【分析】利用相似三角形的性质构建方程即可解决问题.【解答】解:如图,设AD交PN于点K.∵PM:PQ=3:2,∴可以假设MP=3k,PQ=2k.∵四边形PQNM是矩形,∴PM∥BC,∴△APM∽△ABC,∵AD⊥BC,BC∥PM,∴AD⊥PM,∴PMBC∴3k120解得k=20mm,∴PM=3k=60mm,故选:A.【点评】本题考查相似三角形的应用,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.10.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中第九卷《勾股》章,主要讲述了以测量问题为中心的直角三角形三边互求的关系.其中记载:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”译文:“今有一座长方形小城,东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门.走出东门15里处有棵大树,问走出南门多少步恰好能望见这棵树?”(注:1里=300步)你的计算结果是:出南门几何步而见木()A.300步 B.315步 C.400步 D.415步【分析】根据题意写出AB、AC、CD的长,根据相似三角形的性质得到比例式,计算即可.【解答】解:由题意得,AB=15里,AC=4.5里,CD=3.5里,△ACB∽△DEC,∴DEAC=DC解得,DE=1.05里=315步,∴走出南门315步恰好能望见这棵树,故选:B.【点评】本题考查的是直角三角形三边关系,掌握相似三角形的判定定理和性质定理是解题的关键.11.相邻两根电杆都用钢索在地面上固定,如图,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P离地面()A.2.4米 B.8米 C.3米 D.必须知道两根电线杆的距离才能求出点P离地面距离【分析】作PE⊥BNC于E,易得△APB∽△CDP,可得对应高CE与BE之比,易得CD∥PE可得△BPE∽△BDC,利用对应边成比例可得比例式,把相关数值代入求解即可.【解答】解:作PE⊥BC于E.∵CD∥AB,∴△APB∽△CDP,∴ABCD∵CD∥PE,∴△BPE∽△BDC,∴PECD∴PE4解得PE=2.4.故选:A.【点评】考查相似三角形的应用;用到的知识点为:平行于三角形一边的直线与三角形另两边相交,截得的两三角形相似;相似三角形的对应边成比例;对应高的比等于相似比;解决本题的突破点是得到CE与BE的比.12.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的是()①△CMP∽△BPA;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为25;⑤当△ABP≌△ADN时,BP=42-A.①③④ B.①②⑤ C.①②③ D.②④⑤【分析】①正确,只要证明∠APM=90°即可解决问题.②正确,设PB=x,构建二次函数,利用二次函数性质解决问题即可.③错误,设ND=NE=y,在RT△PCN中,利用勾股定理求出y即可解决问题.④错误,作MG⊥AB于G,因为AM=MG2+AG2=16+AG2,所以AG⑤正确,在AB上取一点K使得AK=PK,设PB=z,列出方程即可解决问题.【解答】解:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BPA.故①正确,设PB=x,则CP=4﹣x,∵△CMP∽△BPA,∴PBCM∴CM=14x(4﹣∴S四边形AMCB=12[4+14x(4﹣x)]×4=-12x2+2x+8∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,设ND=NE=y,在RT△PCN中,(y+2)2=(4﹣y)2+22解得y=4∴NE≠EP,故③错误,作MG⊥AB于G,∵AM=MG∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4-14x(4﹣x)=14(x∴x=2时,AG最小值=3,∴AM的最小值=16+9=5,故∵△ABP≌△ADN时,∴∠PAB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KPA=∠KAP=22.5°∵∠PKB=∠KPA+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=2z∴z+2z∴z=42-∴PB=42-4,故⑤故选:B.【点评】本题考查相似形综合题、正方形的性质、相似三角形的判定和性质、全等三角形的性质、勾股定理等知识,解题的关键是学会构建二次函数解决最值问题,学会添加常用辅助线,属于中考压轴题.二.填空题(共12小题)13.如图,身高1.5m的小波站在操场上,测得其影长B′C′=1.8m;同时测得旗杆AB的影长BC=18m,则旗杆AB的高度为15m.【分析】根据同一时刻物高和影长成正比列出比例式即可求解.【解答】解:根据题意得:A'B'AB即:1.5AB解得:AB=15,故答案为:15.【点评】本题考查的是相似三角形的应用,解答此题的关键是找出相似三角形,再根据相似三角形的对应边成比例进行解答.14.如图,△ABC是一块锐角三角形材料,边BC=30cm,高AD=20cm,要把它加工成一个矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB,AC上,要使矩形EGHF的面积最大,EF的长应为15cm.【分析】此题为二次函数的应用类试题,设EG=xcm,先根据相似求出EF,然后根据矩形面积公式求出S与x之间的解析式,运用公式求抛物线顶点的横坐标即可.【解答】解:设EG=xcm,∵四边形EFHG是矩形,∴EF∥BC,∴△AEF∽△ABC,∴AMAD∴20-x20解得EF=32(20﹣∴S矩形EFHG=EG•EF=32(20﹣x)•即S=-32x2∴当x=-b2a此时EF=32(20﹣x)=15故答案为15.【点评】本题由相似三角形的实际问题,矩形EGHF的面积的表达,把问题转化为二次函数;利用二次函数的性质解决题目的问题.具有一定的综合性.15.如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为100cm2.【分析】设AF=x,根据正方形的性质用x表示出EF、CF,证明△AEF∽△ABC,根据相似三角形的性质求出BC,根据勾股定理列式求出x,根据三角形的面积公式、正方形的面积公式计算即可.【解答】解:设AF=x,则AC=3x,∵四边形CDEF为正方形,∴EF=CF=2x,EF∥BC,∴△AEF∽△ABC,∴EFBC∴BC=6x,在Rt△ABC中,AB2=AC2+BC2,即302=(3x)2+(6x)2,解得,x=25,∴AC=65,BC=125,∴剩余部分的面积=12×125×65-45×故答案为:100cm2.【点评】本题考查的是相似三角形的应用、正方形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.16.用杠杆撬石头的示意图如图所示,P是支点,当用力压杠杆的A端时,杠杆绕P点转动,另一端B向上翘起,石头就被撬动.现有一块石头要使其滚动,杠杆的B端必须向上翘起8cm,已知杠杆的动力臂AP与阻力臂BP之比为4:1,要使这块石头滚动,至少要将杠杆的A端向下压32cm.【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A向下压的长度.【解答】解:如图:AM、BN都与水平线垂直,即AM∥BN;易知:△APM∽△BPN;∴ACBC∵杠杆的动力臂AP与阻力臂BP之比为4:1,∴AMBN=41,即∴当BN≥8cm时,AM≥32cm;故要使这块石头滚动,至少要将杠杆的端点A向下压32cm.故答案为:32.【点评】本题考查相似三角形的判定与性质的实际应用,正确的构造相似三角形是解题的关键.17.如图,两根竖直的电线杆AB长为12,CD长为4,AD交BC于点E,则点E到地面的距离EF的长是3.【分析】根据相似三角形对应边成比例可得DFBD=EF【解答】解:∵两根电线杆AB、CD都竖直,EF垂直于地面,∴△ABD∽△EFD,△BCD∽△BEF,∴DFBD=EF∴DFBD即EF12解得EF=3.故答案为:3.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例的性质,利用EF1218.我国古代数学著作中记载了一个问题:“今有邑方不知大小,各开中门,出北门二十步有木,出西门四十五步见木,问:邑方几何?”其大意是:一座正方形城池,西、北边正中各开一道门,从北门往正北方向走20步后刚好有一树木,若从西门往正西方向走45步后正好看到树木,则正方形城池的边长为60步.【分析】根据题意,可知Rt△ABE∽Rt△CED,从而可以得到对应边的比相等,从而可以求得正方形城池的边长.【解答】解:设正方形城池的边长为x步,由题意可得,Rt△ABE∽Rt△CED,∴ABCE即201解得,x1=60,x2=﹣60(不合题意,舍去),答:正方形城池的边长为60步,故答案为:60.【点评】本题考查相似三角形的应用、数学常识、正方形的性质,解答本题的关键是明确题意.利用相似三角形的性质和数形结合的思想解答.19.利用标杆CD测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E.若标杆CD的高为1.5米,测得DE=2米,BD=16米,则建筑物的高AB为13.5米.【分析】根据同一时刻同一地点物高与影长成正比列式求得CD的长即可.【解答】解:∵AB∥CD,∴△EBA∽△ECD,∴CDAB=ED∴AB=13.5(米).故答案为:13.5【点评】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出直角三角形,难度不大.20.如图,一位同学通过调整自己的位置,设法使三角板DEF的斜边DF保持水平,并且边DE与点B在同一直线上,已知两条边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB为5.5m.【分析】利用Rt△DEF和Rt△BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.【解答】解:∵∠DEF=∠DCB=90°,∠D=∠D,∴△DEF∽△DCB∴DEDC∵DE=0.4m,EF=0.2m,CD=8m,∴0.48∴CB=4(m),∴AB=AC+BC=1.5+4=5.5(米).故答案为:5.5.【点评】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.21.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD=2,则AB的长是6.【分析】根据题意可知△ABO∽△DCO,根据相似三角形的性质即可求出AB的长度,此题得解.【解答】解:根据题意,可知:△ABO∽△DCO,∴ABDC=AO∴AB=6.故答案为:6.【点评】本题考查了相似三角形的应用,利用相似三角形的性质求出AB的长度是解题的关键.22.如图,电线杆上的路灯距离地面8m,身高1.6m的小明(AB)站在距离电线杆的底部(点O)20m的A处,则小明的影子AM长为5m.【分析】根据相似三角形对应边成比例列式计算即可得解.【解答】解:由题意得,AMAM+OA即AMAM+20解得:AM=5.故答案为:5.【点评】本题考查了相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.23.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这些结论中正确的有①③⑤(只填序号)【分析】①正确,根据两角对应相等的两个三角形相似即可判断;②错误.根据斜边不相等即可判断;③正确.先利用面积求出CH,再利用勾股定理求出AH,即可判断;④错误.先判断出点C是BB1的中点,求出点B1即可判断;⑤正确.首先证明四边形DEGF是矩形,推出DF=EG,DE=FG,设DF=EG=x,构建二次函数,利用二次函数的性质即可判断;【解答】解:如图,作CH⊥AB于H.∵DF⊥AB于F,EG⊥AB于G,∴∠AFD=∠DCE=∠EGB=90°,∵DE∥AB,∴∠CDE=∠DAF,∠CED=∠EBG,∴△AFD∽△DCE∽△EGB;故①正确;当AD=CD时,∵DE>CD,∴DE>AD,∴△AFD与△DCE不全等,故②错误,在Rt△ACB中,∵AC=4,BC=3,∴AB=5,∴CH=AC⋅BC∴AH=A∴C(3.2,2.4),故③正确,将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1,设B1为(m,n),则有m+52=3.2,n+02=2.4,∴B1(1.4,4.8),故④错误;∵DF⊥AB于F,EG⊥AB于G,∴DF∥EG,∵DE∥AB,∴四边形DEGF是平行四边形,∵∠DFG=90°,∴四边形DEGF是矩形,∴DF=EG,DE=FG,设DF=EG=x,则AF=43x,BG=∴DE=FG=5-43x-34x∵S矩形DEGF=x(5-2512x)=-2512∵-25∴S最大值=-254×(-25综上所述,正确的有:①③⑤,故答案为①③⑤.【点评】本题考查相似三角形综合题、全等三角形的判定、矩形的判定和性质、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考压轴题.24.如图,点P是边长为2的正方形ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF的最小值是2.其中正确的是②③④.(把你认为正确结论的序号都填上)【分析】由特殊值法可判断①,由“SAS”可证△ABP≌△CBP,可得AP=CP,由矩形的性质可得EF=PC=AP,由“SSS”可证△APD≌△CPD,可得∠DAP=∠DCP,由平行线的性质可得∠DCP=∠H,由“SAS”可证△PEC≌△FCE,可得∠PCE=∠FEC,由余角的性质可得AH⊥EF;通过证明△CPM∽△HPC,可得CPPH=PMCP,可得AP2=PM•PH;由AP=EF,可得【解答】解:①因为当点P与BD中点重合时,CM=0,显然FM≠CM,故①不合题意;②如图,连接PC,∵四边形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=45°,且BP=BP,∴△ABP≌△CBP(SAS)∴AP=CP,∵PE⊥BC,PF⊥DC,∠BCD=90°,∴四边形PECF是矩形,∴EF=PC=AP,∵AP=PC,AD=CD,PD=PD,∴△APD≌△CPD(SSS)∴∠DAP=∠DCP,∵AD∥BC,∴∠DAP=∠H,∴∠DCP=∠H,∵PE=CF,∠PEC=∠FCE=90°,EC=EC,∴△PEC≌△FCE(SAS)∴∠PCE=∠FEC,∵∠PCF+∠PCE=∠FCE=90°,∴∠H+∠FEC=90°,∴∠EGH=90°,∴AH⊥EF,故②符合题意;③∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴CPPH∴CP2=PM•PH,且AP=PC,∴AP2=PM•PH;故③符合题意;④∵EF=AP,∴AP取最小值时,EF有最小值,∴当AP⊥BD时,AP有最小值,此时:∵AB=AD=2,∠BAD=90°,AP⊥BD,∴BD=22,AP=12BD∴EF的最小值为2,故④符合题意,故答案为②③④.【点评】本题是相似综合题,考查正方形的性质,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.三.解答题(共6小题)25.某班在学习《利用相似三角形测高》时开展了“测量学校操场上旗杆的高度”的活动.小明将镜子放在离旗杆32m的点C处(即AC=32m),然后沿直线AC后退,在点D处恰好看到旗杆顶端B在镜子中的像与镜子上的标记重合(如图),根据物理学知识可知:法线l⊥AD,∠1=∠2.若小明的眼睛离地面的高度DE为1.5m,CD=3m,求旗杆AB的高度.(要有证明过程,再求值)【分析】直接利用已知进而得出△ECD∽△BCA,即可得到EDAB【解答】解:∵法线l⊥AD,∠1=∠2,∴∠ECD=∠BCA,又∵∠EDC=∠BAC=90°,∴△ECD∽△BCA,∴EDAB∵DE=1.5m,CD=3m,AC=32m,∴1.5AB解得:AB=16,答:旗杆AB的高度为16m.【点评】此题主要考查了相似三角形的应用,正确得出相似三角形是解题关键.26.如图,一块材料的形状是锐角三角形ABC,边BC长13cm,BC边上的高AD为6cm,把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长.【分析】(1)根据矩形的对边平行得到BC∥EF,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设正方形零件的边长为xmm,则KD=EF=x,AK=6﹣x,根据EF∥BC,得到△AEF∽△ABC,根据相似三角形的性质得到比例式,解方程即可得到结果.【解答】解:(1)∵正方形EGHF,∴EF∥BC,∴△AEF∽△ABC,(2)设EG=EF=x∵△AEF∽△ABC∴EFBC∴x13∴x=78∴正方形零件的边长为7819cm【点评】此题主要考查了正方形的性质,矩形的性质,相似三角形的判定和性质,解本题的关键是判断出△AEF∽△ABC.27.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,DE=40cm,测得边DF离地面的高度AC=1.5m,CD=12m,求树高AB.【分析】首先利用勾股定理计算出EF长,再证明△DCB∽△DEF,由相似三角形的性质可得CBEF=DC【解答】解:在Rt△DEF中,DE2+EF2=DF2,即:402+EF2=502,∴EF=30,由题意得:∠BCD=∠DEF=90°,∠CDB=∠EDF,∴△DCB∽△DEF,∴CBEF∵EF=30cm=0.3m,DE=40cm=0.4m,CD=12m,∴BC0.3解得:BC=9米,∵AC=1.5m,∴AB=AC+BC=1.5+9=10.5m.【点评】此题主要考查了相似三角形的应用,关键是掌握三角形相似对应边成比例.28.AD是△ABC的中线,G是AD上任意一点时(点G不与A重合),过点G的直线交边AB于E,交射线AC于点F,设AE=xAB,AF=yAC(x、y≠0).(1)如图1,若点G与D重合,△ABC为等边三角形,且∠BDE=30°,证明:△AEF∽△DEA;(2)如图2,若点G与D重合,证明:1x(3)如图3,若AG=nAD,x=12,y=3【分析】(1)先判断出∠BAD=30°,再判断出∠F=30°=∠BAD,即可得出结论;(2)先判断出△DEB≌△DHC,得出CH=BE,再判断出△FCH∽△FAE,即可得出结论;(3)先判断出点E是AB的中点,进而得出DE是△ABC的中位线,得出DE=12AC,DE∥AC,进而得出△DGE∽△【解答】解:(1)∵△ABC为等边三角形,∴∠BAC=∠B=60°,AB=AC,∵AD是△ABC的中线,∴∠BAD=12∠BAC=30∵∠BDE=30°,∴∠EF⊥AB,∴∠F=30°=∠BAD,∵∠AED=∠FEA=90°,∴△AEF∽△DEA;(2)如图2,过C作CH∥AB交EF于H,∴∠B=∠DCH,∠BED=∠CHD,∵AD是△ABC的中线,∴BD=CD,∴△DEB≌△DHC(AAS),∴CH=BE,∵CH∥AB,∴△FCH∽△FAE,∴CFAF∴CFAF∵ABAE=1∴CFAF=1-ACAF=1-∴1-1∴1x(3)如图3,∵y=3∴AF=32∴AC=23∵x=1∴AE=12∴点E是AB的中点,∵AD是△ABC的中线,∴点D是BC的中点,∴DE=12AC=12•23AF=1∴△DGE∽△AGF,∴DGAG∴DG=13∴AD=AG+DG=AG+13AG=∴AG=34AD=∴n=3【点评】此题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论