版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省保定市长城高级中学2024届数学高二下期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则()A.1或9 B.6 C.9 D.以上都不对2.设,则的展开式中的常数项为()A. B. C. D.3.在的展开式中,系数的绝对值最大的项为()A. B. C. D.4.与曲线相切于处的切线方程是(其中是自然对数的底)()A. B. C. D.5.若的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为A. B. C. D.6.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是()A.乙B.甲C.丁D.丙7.已知函数在处取得极值,则的图象在处的切线方程为()A. B. C. D.8.抛物线上的点到直线的最短距离为()A. B. C. D.9.()A. B. C.2 D.110.下列四个命题中,真命题的个数是()①命题:“已知,“”是“”的充分不必要条件”;②命题:“p且q为真”是“p或q为真”的必要不充分条件;③命题:已知幂函数的图象经过点(2,),则f(4)的值等于;④命题:若,则.A.1 B.2 C.3 D.411.已知函数,若,,,则的取值范围是()A. B. C. D.12.函数的图象在点处的切线方程为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为__________.14.设函数,若对任意的,存在,使得,则实数的取值范围是______________.15.已知复数是纯虚数,则实数_________.16.已知、满足组合数方程,则的最大值是_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,三棱锥中,平面,,,为上一点,,,分别为,的中点.(1)证明:;(2)求平面与平面所成角的余弦值.18.(12分)已知函数f(x)=x2(x-1).(1)求函数f(x)的单调区间;(2)求f(x)在区间[-1,2]上的最大值和最小值.19.(12分)在中,内角所对的边分别为,且.(1)求角;(2)若,的面积为,求的值.20.(12分)若存在常数(),使得对定义域内的任意,(),都有成立,则称函数在其定义域上是“利普希兹条件函数”.(1)判断函数是否是“利普希兹条件函数”,若是,请证明,若不是,请说明理由;(2)若函数()是“利普希兹条件函数”,求常数的最小值;(3)若()是周期为2的“利普希兹条件函数”,证明:对任意的实数,,都有.21.(12分)已知函数.(1)当时,解不等式;(2)若不等式有实数解,求实数a的取值范围.22.(10分)已知函数.(Ⅰ)求函数的最小正周期和单调递减区间;(Ⅱ)已知,且,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据双曲线的一条渐近线方程为求出,由双曲线的定义求出,判断点在左支上,即求.【题目详解】双曲线的渐近线方程为,又双曲线的一条渐近线方程为,.由双曲线的定义可得,又,或.点在左支上,.故选:.【题目点拨】本题考查双曲线的定义和性质,属于基础题.2、B【解题分析】
利用定积分的知识求解出,从而可列出展开式的通项,由求得,代入通项公式求得常数项.【题目详解】展开式通项公式为:令,解得:,即常数项为:本题正确选项:【题目点拨】本题考查二项式定理中的指定项系数的求解问题,涉及到简单的定积分的求解,关键是能够熟练掌握二项展开式的通项公式的形式.3、D【解题分析】
根据最大的系数绝对值大于等于其前一个系数绝对值;同时大于等于其后一个系数绝对值;列出不等式求出系数绝对值最大的项;【题目详解】二项式展开式为:设系数绝对值最大的项是第项,可得可得,解得在的展开式中,系数的绝对值最大的项为:故选:D.【题目点拨】本题考查二项展开式中绝对值系数最大项的求解,涉及展开式通项的应用,考查分析问题和解决问题的能力,属于中等题.4、B【解题分析】
求出导函数,把代入导函数,可求出切线的斜率,根据的坐标和直线的点斜式方程可得切线方程.【题目详解】由可得,切线斜率,故切线方程是,即.故选B.【题目点拨】本题主要考查利用导数求曲线切线方程,属于简单题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.5、B【解题分析】由题意知:,所以,故,令得所有项系数之和为.6、A【解题分析】
由题意,这个问题的关键是四人中有两人说真话,另外两人说了假话,通过这一突破口,进行分析,推理即可得到结论.【题目详解】在甲、乙、丙、丁四人的供词中,可以得出乙、丁两人的观点是一致的,因此乙丁两人的供词应该是同真同假(即都是真话或都是假话,不会出现一真一假的情况);假设乙、丁两人所得都是真话,那么甲、丙两人说的是假话,由乙说真话可推出丙是犯罪的结论;由甲说假话,推出乙、丙、丁三人不是犯罪的结论;显然这两人是相互矛盾的;所以乙、丁两人说的是假话,而甲、丙两人说的是真话,由甲、丙的供词可以断定乙是犯罪的,乙、丙、丁中有一人是犯罪的,由丁说假话,丙说真话推出乙是犯罪的,综上可得乙是犯罪的,故选A.【题目点拨】本题主要考查了推理问题的实际应用,其中解答中结合题意,进行分析,找出解决问题的突破口,然后进行推理是解答的关键,着重考查了推理与论证能力.7、A【解题分析】
利用列方程,求得的值,由此求得,进而求得的图象在处的切线方程.【题目详解】,函数在处取得极值,,解得,,于是,可得的图象在处的切线方程为,即.故选:A【题目点拨】本小题主要考查根据极值点求参数,考查利用导数求切线方程,属于基础题.8、B【解题分析】分析:设抛物线上点,由点到直线距离公式,得点A到直线的距离,由二次函数的性质,可求最小距离.详解:设抛物线上的任意一点,由抛物线的性质点A到直线的距离易得由二次函数的性质可知,当时,最小距离.故选B.点睛:本题考查抛物线的基本性质,点到直线距离公式,考查学生转化能力和计算能力.9、A【解题分析】
根据定积分表示直线与曲线围成的图像面积,即可求出结果.【题目详解】因为定积分表示直线与曲线围成的图像面积,又表示圆的一半,其中;因此定积分表示圆的,其中,故.故选A【题目点拨】本题主要考查定积分的几何意义,熟记定积分几何意义即可,属于基础题型.10、C【解题分析】
命题①单位圆x2+y2=1上或圆外任取一点P(a,b),满足“a2+b2≥1”,根据三角形两边之和大于第三边,一定有“|a|+|b|≥1”,在单位圆内任取一点M(a,b),满足“|a|+|b|≥1”,但不满足“a2+b2≥1”,从而判断命题的真假性;命题②先由“p且q为真”推出p、q的真假,然后判断“p或q”的真假,反之再加以判断;命题③直接把点的坐标代入幂函数求出α,然后把x=4代入求值即可;命题④构造函数f(x)=x﹣1+lnx,其中x>0,利用导数判断函数的单调性,从而判断命题的真假性;【题目详解】命题①如图在单位圆x2+y2=1上或圆外任取一点P(a,b),满足“a2+b2≥1”,根据三角形两边之和大于第三边,一定有“|a|+|b|≥1”,在单位圆内任取一点M(a,b),满足“|a|+|b|≥1”,但不满足,“a2+b2≥1”,故a2+b2≥1是“|a|+|b|≥1”的充分不必要条件,故命题①正确;命题②“p且q为真”,则命题p、q均为真,所以“p或q为真”.反之“p或q为真”,则p、q都为真或p、q一真一假,所以不一定有“p且q为真”.所以命题“p且q为真”是“p或q为真”的充分不必要条件,故命题②不正确;命题③由幂函数f(x)=xα的图象经过点(2,),所以2α=,所以α=﹣,所以幂函数为f(x)=,所以f(4)=,所以命题③正确;命题④若x+lnx>1,则x﹣1+lnx>0,设f(x)=x﹣1+lnx,其中x>0,∴>0恒成立,∴f(x)在(0,+∞)上单调递增,且f(1)=0,∴f(x)>0时x>1,即x+lnx>1时x>1,所以命题④正确.故选:C【题目点拨】本题考查命题的真假判断,充分不必要条件,幂函数,构造函数,利用导数判断函数的单调性,考查学生的计算能力,知识综合性强,属于中档题.11、D【解题分析】
根据题意将问题转化为,记,从而在上单调递增,从而在上恒成立,利用分离参数法可得,结合题意可得即可.【题目详解】设,因为,所以.记,则在上单调递增,故在上恒成立,即在上恒成立,整理得在上恒成立.因为,所以函数在上单调递增,故有.因为,所以,即.故选:D【题目点拨】本题考查了导数在不等式恒成立中的应用、函数单调性的应用,属于中档题.12、C【解题分析】f′(x)=,则f′(1)=1,故函数f(x)在点(1,-2)处的切线方程为y-(-2)=x-1,即x-y-3=0.故选C二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】该同学通过测试的概率为,故答案为.14、【解题分析】
由任意的,存在,使得,可得在的值域为在的值域的子集,构造关于实数的不等式,可得结论。【题目详解】由题可得:,令,解得:,令,解得:,令,解得:所以在上单调递增,在上单调递减,,,故在的值域为;,所以在为偶函数;当时,,由于,则,,由,即当时,,故函数在上单调递增,在单调递减,,,故在的值域为;由任意的,存在,使得,可得在的值域为在的值域的子集,则,解得:;所以实数的取值范围是【题目点拨】本题考查利用导数求函数的最值,解题的关键是根据条件分析出在的值域为在的值域的子集,属于中档题。15、【解题分析】
将化简为的形式,根据复数是纯虚数求得的值.【题目详解】因为为纯虚数,所以.【题目点拨】本小题主要考查复数乘法运算,考查纯虚数的概念,属于基础题.16、【解题分析】
由组合数的性质得出或,然后利用二次函数的性质或基本不等式求出的最大值,并比较大小可得出结论.【题目详解】、满足组合数方程,或,当时,则;当时,.因此,当时,取得最大值.故答案为:.【题目点拨】本题考查组合数基本性质的应用,同时也考查了两数乘积最大值的计算,考查了二次函数的基本性质的应用以及基本不等式的应用,考查运算求解能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解题分析】分析:由PA=AC=AB,N为AB上一点,AB=4AN,我们不妨令PA=1,然后以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系.由此不难得到各点的坐标(1)要证明CM⊥SN,我们可要证明即可,根据向量数量积的运算,我们不难证明;(2)要求平面与平面CMN所成角的大小,我们只要利用求向量夹角的方法,求出平面与平面CMN的法向量的夹角,再由它们之间的关系,易求出平面与平面CMN所成角的大小.详解:设PA=1,以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系(如图).则P(0,0,1),C(0,1,0),B(2,0,0),又AN=AB,M、S分别为PB、BC的中点,∴N(,0,0),M(1,0,),S(1,,0),(1)=(1,-1,),=(-,-,0),∴·=(1,-1,)·(-,-,0)=0,[来源:Z.X.X.K]因此CM⊥SN.=(-,1,0),设a=(x,y,z)为平面CMN的一个法向量,∴·a=0,·a=0.则∴取y=1,则得=(2,1,-2).平面NBC的法向量,因为平面NBC与平面CMN所成角是锐二面角所以平面NBC与平面CMN所成角的余弦值为.点睛:空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.18、(1)的递增区间为,递减区间为.(2)最大值,最小值.【解题分析】分析:(1)求导数后,由可得增区间,由可得减区间.(2)根据单调性求出函数的极值和区间的端点值,比较后可得最大值和最小值.详解:(1)∵,∴.由,解得或;由,解得,所以的递增区间为,递减区间为.(2)由(1)知是的极大值点,是的极小值点,所以极大值,极小值,又,,所以最大值,最小值.点睛:(1)求单调区间时,由可得增区间,由可得减区间,解题时注意导函数的符号与单调性的关系.(2)求函数在闭区间上的最值时,可先求出函数的极值和区间的端点值,通过比较后可得最大值和最小值.19、(1);(2)【解题分析】
(1)可通过化简计算出的值,然后解出的值。(2)可通过计算和的值来计算的值。【题目详解】(1)由得,又,所以,得,所以。(2)由的面积为及得,即,又,从而由余弦定理得,所以,所以。【题目点拨】本题考察的是对解三角函数的综合运用,需要对相关的公式有着足够的了解。20、(1)不是;详见解析(2);(3)证明见解析.【解题分析】
(1)利用特殊值,即可验证是不是“利普希兹条件函数”.(2)分离参数,将不等式变为关于,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中等教育的课外活动与社团建设考核试卷
- 固体饮料行业市场需求细分分析报告分析报告考核试卷
- 玉石的民族与文化特征考核试卷
- 注射剂中的天然辅料的应用考核试卷
- 租赁经营的品牌管理与市场营销策略研究考核试卷
- 化学矿的环境保护与低碳节能发展实施方案考核试卷
- 渔业知识产权保护与创新考核试卷
- 安全管理方案与评估作业指导书考核试卷
- 中国汽车玻璃升降器电机行业市场现状分析及竞争格局与投资发展研究报告(2024-2030版)
- 中国柠檬草提取物行业市场现状分析及竞争格局与投资发展研究报告(2024-2030版)
- 2023-2024学年北京西城区三十五中高一(上)期中英语试题及答案
- 医院护理培训课件:《用药错误案例分析之RCA根本原因分析法》
- 机械设计制造及其自动化应用研究
- 高通量测序技术简介
- 塑料吸料机塑胶吸料机吸粉机安全操作及保养规程
- 矿产资源“三率”指标要求+第14部分:饰面石材和建筑用石料矿产
- 支气管扩张伴咯血护理教学课件
- 维保单位变更申请表格
- 路基冲击压实施工方案(DOC)
- 关于新疆土地承包合同范本
- 防火及动火作业监理实施细则
评论
0/150
提交评论