版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北小池滨江高级中学2024届高二数学第二学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的最大值为()A. B.1 C.4033 D.2.若角为三角形的一个内角,并且,则()A. B. C. D.3.下列四个函数中,在区间上是减函数的是()A. B. C. D.4.若的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为A. B. C. D.5.下列判断错误的是A.若随机变量服从正态分布,则B.“R,”的否定是“R,”C.若随机变量服从二项分布:,则D.“<”是“a<b”的必要不充分条件6.复数的实部与虚部分别为()A., B., C., D.,7.己知弧长的弧所对的圆心角为弧度,则这条弧所在的圆的半径为()A. B. C. D.8.有10名学生和2名老师共12人,从这12人选出3人参加一项实践活动则恰有1名老师被选中的概率为()A.922 B.716 C.99.设图一是某几何体的三视图,则该几何体的体积为()A. B.C. D.10.由曲线,围成的封闭图形的面积为()A. B. C. D.11.已知数列满足,则()A. B. C. D.12.将函数的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向右平移个单位长度,则所得图象对应的函数的解析式为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从长度为、、、的四条线段中任选三条,能构成三角形的概率为.14.数列共有13项,,,且,,满足这种条件不同的数列个数为______15.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为__________.16.已知函数且,则____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,求的最小值;(2)若存在实数,,使得,求的最小值.18.(12分)某市大力推广纯电动汽车,对购买用户依照车辆出厂续驶里程的行业标准,予以地方财政补贴.其补贴标准如下表:2017年底随机调査该市1000辆纯电动汽车,统计其出厂续驶里程,得到频率分布直方图如图所示.用样本估计总体,频率估计概率,解决如下问题:(1)求该市纯电动汽车2017年地方财政补贴的均值;(2)某企业统计2017年其充电站100天中各天充电车辆数,得如下的频数分布表:(同一组数据用该区间的中点值作代表)2018年2月,国家出台政策,将纯电动汽车财政补贴逐步转移到充电基础设施建设上来.该企业拟将转移补贴资金用于添置新型充电设备.现有直流、交流两种充电桩可供购置.直流充电桩5万元/台,每台每天最多可以充电30辆车,每天维护费用500元/台;交流充电桩1万元/台,每台每天最多可以充电4辆车,每天维护费用80元/台.该企业现有两种购置方案:方案一:购买100台直流充电桩和900台交流充电桩;方案二:购买200台直流充电桩和400台交流充电桩.假设车辆充电时优先使用新设备,且充电一辆车产生25元的收入,用2017年的统计数据,分别估计该企业在两种方案下新设备产生的日利润.(日利润日收入日维护费用)19.(12分)对任意正整数n,设表示n的所有正因数中最大奇数与最小奇数的等差中项,表示数列的前n项和.(1)求,,,,的值;(2)是否存在常数s,t,使得对一切且恒成立?若存在,求出s,t的值,并用数学归纳法证明;若不存在,请说明理由.20.(12分)如图所示,在三棱柱中,是边长为4的正方形,,.(l)求证:;(2)求二面角的余弦值.21.(12分)近日,某地普降暴雨,当地一大型提坝发生了渗水现象,当发现时已有的坝面渗水,经测算,坝而每平方米发生渗水现象的直接经济损失约为元,且渗水面积以每天的速度扩散.当地有关部门在发现的同时立即组织人员抢修渗水坝面,假定每位抢修人员平均每天可抢修渗水面积,该部门需支出服装补贴费为每人元,劳务费及耗材费为每人每天元.若安排名人员参与抢修,需要天完成抢修工作.写出关于的函数关系式;应安排多少名人员参与抢修,才能使总损失最小.(总损失=因渗水造成的直接损失+部门的各项支出费用)22.(10分)已知函数,.(Ⅰ)求函数的值域;(Ⅱ)若方程在上只有三个实数根,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】,选C.2、A【解题分析】分析:利用同角关系,由正切值得到正弦值与余弦值,进而利用二倍角余弦公式得到结果.详解:∵角为三角形的一个内角,且,∴∴故选:A点睛:本题考查了同角基本关系式,考查了二倍角余弦公式,考查了计算能力,属于基础题.3、D【解题分析】
逐一对四个选项的函数进行判断,选出正确答案.【题目详解】选项A:因为底数大于1,故对数函数在区间上是增函数;选项B::因为底数大于1,故指数函数在区间上是增函数;选项C:因为指数大于零,故幂函数在区间上是增函数;选项D;反比例函数当比例系数大于零时,在每个象限内是减函数,故在区间上是减函数,故本题选D.【题目点拨】本题考查了指对幂函数的单调性问题,熟练掌握指对幂函数的单调性是解题的关键.4、B【解题分析】由题意知:,所以,故,令得所有项系数之和为.5、D【解题分析】
根据题目可知,利用正态分布的对称性、含有一个量词的命题的否定、二项分布的变量的期望值公式以及不等式的基本性质逐项分析,得出答案.【题目详解】(1)随机变量服从正态分布,故选项正确.(2)已知原命题是全称命题,故其否定为特称命题,将换为,条件不变,结论否定即可,故B选项正确.(3)若随机变量服从二项分布:,则,故C选项正确.(4)当时,“a<b”不能推出“<”,故D选项错误.综上所述,故答案选D.【题目点拨】本题是一个跨章节综合题,考查了正态分布的对称性、含有一个量词的命题的否定、二项分布的变量的期望值公式以及不等式的基本性质四个知识点.6、A【解题分析】分析:化简即可得复数的实部和虚部.详解:复数的实数与虚部分别为5,5.故选A.点睛:复数相关概念与运算的技巧(1)解决与复数的基本概念和性质有关的问题时,应注意复数和实数的区别与联系,把复数问题实数化是解决复数问题的关键.(2)复数相等问题一般通过实部与虚部对应相等列出方程或方程组求解.(3)复数的代数运算的基本方法是运用运算法则,但可以通过对代数式结构特征的分析,灵活运用i的幂的性质、运算法则来优化运算过程.7、D【解题分析】
利用弧长公式列出方程直接求解,即可得到答案.【题目详解】由题意,弧长的弧所对的圆心角为2弧度,则,解得,故选D.【题目点拨】本题主要考查了圆的半径的求法,考查弧长公式等基础知识,考查了推理能力与计算能力,是基础题.8、A【解题分析】
先求出从12人中选3人的方法数,再计算3人中有1人是老师的方法数,最后根据概率公式计算.【题目详解】从12人中选3人的方法数为n=C123=220,3人中愉有∴所求概率为P=m故选A.【题目点拨】本题考查古典概型,解题关键是求出完成事件的方法数.9、B【解题分析】有三视图可知该几何体是一个长方体和球构成的组合体,其体积.10、C【解题分析】围成的封闭图形的面积为,选C.11、B【解题分析】分析:首先根据题中所给的递推公式,推出,利用累求和与对数的运算性质即可得出结果详解:由,可得,即,累加得,又,所以,所以有,故选B.点睛:该题考查的是有关利用累加法求通项的问题,在求解的过程中,需要利用题中所给的递推公式,可以转化为相邻两项差的式子,而对于此类式子,就用累加法求通项,之后再将100代入求解.12、D【解题分析】分析:依据题的条件,根据函数的图像变换规律,得到相应的函数解析式,利用诱导公式化简,可得结果.详解:根据题意,将函数的图象上各点的横坐标伸长到原来的倍(纵坐标不变),得到的函数图像对应的解析式为,再将所得图象向右平移个单位长度,得到的函数图像对应的解析式为,故选D.点睛:该题考查的是有关函数图像的变换问题,在求解的过程中,需要明确伸缩变换和左右平移对应的规律,影响函数解析式中哪一个参数,最后结合诱导公式化简即可得结果.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:这是的道古典概率题,其基本事件有共4个,由于是任意选取的,所以每个基本事件发生的可能性是相等的,记事件A为“所选三条线段能构成三角形”,则事件A包含2个基本事件,根据概率公式得:.考点:古典概率的计算14、495【解题分析】
根据题意,先确定数列中的个数,再利用组合知识,即可得到结论.【题目详解】,或,,设上式中有个,则有个,,解得:,这样的数列个数有.故答案为:495【题目点拨】本题以数列递推关系为背景,本质考查组合知识的运用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意确定数列中的个数是关键.15、【解题分析】试题分析:根据题意,记白球为A,红球为B,黄球为,则一次取出2只球,基本事件为、、、、、共6种,其中2只球的颜色不同的是、、、、共5种;所以所求的概率是.考点:古典概型概率16、【解题分析】
分别令和代入函数解析式,对比后求得的值.【题目详解】依题意①,②,由①得,代入②得.故填-2【题目点拨】本小题主要考查函数求值,考查对数运算,考查分子有理化,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)由函数,根据函数的单调性证明即可.(2)设,求出,,,令,根据函数的单调性求出其最小值即可.【题目详解】(1),,由,解得,由,解得,在单调递减,在单调递增,,在上单调递增,当时,的最小值为.(2)设,则.,则,即,故,,,,即,.令,则,因为和在上单调递增,所以在上单调递增,且,当时,,当时,,在上单调递减,在上单调递增,当时,取最小值,此时,即最小值是.【题目点拨】本题考查了导数在研究函数单调性的应用、导数在求函数最值中的应用,考查了转化与化归的思想,属于难题.18、(1)3.95;(2)见解析【解题分析】分析:(1)由频率分布直方图求出补贴分别是3万元,4万元,4.5万元的概率,即得概率分布列,然后可计算出平均值;(2)由频数分布表计算出每天需要充电车辆数的分布列,分别计算出两种方案中新设备可主观能动性车辆数,从而得实际充电车辆数的分布列,由分布列可计算出均值,从而计算出日利润.详解:(1)依题意可得纯电动汽车地方财政补贴的分布列为:纯电动汽车2017年地方财政补贴的平均数为(万元)(2)由充电车辆天数的频数分布表得每天需要充电车辆数的分布列:若采用方案一,100台直流充电桩和900台交流充电桩每天可充电车辆数为(辆)可得实际充电车辆数的分布列如下表:于是方案一下新设备产生的日利润均值为(元)若采用方案二,200台直流充电桩和400台交流充电桩每天可充电车辆数为(辆)可得实际充电车辆数的分布列如下表:于是方案二下新设备产生的日利润均值为(元)点睛:本题考查统计与概率的相关知识,如频率分布直方图,随机变量的分布列,期望,分布表等,考查数据处理能力,运用数据解决实际问题的能力.19、(1),,,,;(2),见解析.【解题分析】
(1)根据定义计算即可;(2)先由,,确定出s,t的值,再利用数学归纳法证明.【题目详解】(1)1的最大正奇因数为1,最小正奇因数为1,所以,2的最大正奇因数为1,最小正奇因数为1,所以,3的最大正奇因数为3,最小正奇因数为1,所以,4的最大正奇因数为1,最小正奇因数为1,所以,5的最大正奇因数为5,最小正奇因数为1,所以.(2)由(1)知,,,,所以,解得.下面用数学归纳法证明:①当时,,成立;②假设当(,)时,结论成立,即,那么当时,易知当n为奇数时,;当n为偶数时,.所以.所以当时,结论成立.综合①②可知,对一切且恒成立.【题目点拨】本题考查数列中的新定义问题,利用数学归纳法证明等式,考查学生的逻辑推理能力,是一道有一定难度的题.20、(1)见解析;(2)【解题分析】
(1)利用线面垂直的判定定理,证得平面,即可得到;(2)以为轴,轴,轴建立如图所示的空间直角坐标系,求得平面和平面的法向量,利用向量的夹角公式,即可求解.【题目详解】(1)证明:因为是边长为4的正方形,所以,又,,由线面垂直的判定定理,可得平面ABC,所以.(2)在中,有,所以,分别以AC,AB,为x轴,y轴,z轴建立如图所示的空间直角坐标系,,,设平面的法向量为,则,取,则,同理得平面的法向量,设二面角的平面角为,则.【题目点拨】本题考查了直线与平面垂直判定与证明,以及空间角的求解问题,考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.21、(1)(2)应安排名民工参与抢修,才能使总损失最小【解题分析】
(1)由题意得要抢修完成必须使得抢修的面积等于渗水的面积,即可得,所以;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论