版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省抚州市崇仁县第二中学2024届数学高二第二学期期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,四个相同的直角三角形与中间的小正方形拼成一个大正方形,已知小正方形的外接圆恰好是大正方形的内切圆,现在大正方形内随机取一点,则此点取自阴影部分的概率为()A. B. C. D.2.定义1分的地球球心角所对的地球大圆弧长为1海里.在北纬45°圈上有甲、乙两地,甲地位于东经120°,乙位于西经150°,则甲乙两地在球面上的最短距离为()A.5400海里 B.2700海里 C.4800海里 D.3600海里3.抽查10件产品,设事件A:至少有两件次品,则A的对立事件为()A.至多两件次品 B.至多一件次品C.至多两件正品 D.至少两件正品4.下列有关结论正确的个数为()①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件“4个人去的景点不相同”,事件“小赵独自去一个景点”,则;②设,则“”是“的充分不必要条件;③设随机变量服从正态分布,若,则与的值分别为.A.0 B.1 C.2 D.35.设函数的定义域为R,满足,且当时.则当,的最小值是()A. B. C. D.6.已知矩形ABCD中,AB=2,BC=1,F为线段CD上一动点(不含端点),现将△ADF沿直线AF进行翻折,在翻折过程中不可能成立的是()A.存在某个位置,使直线AF与BD垂直 B.存在某个位置,使直线AD与BF垂直C.存在某个位置,使直线CF与DA垂直 D.存在某个位置,使直线AB与DF垂直7.已知函数对于任意的满足(其中是函数的导函数),则下列不等式成立的是A. B.C. D.8.已知=(为虚数单位),则复数()A. B. C. D.9.“所有的倍数都是的倍数,某奇数是的倍数,故该奇数是的倍数.”上述推理()A.大前提错误 B.小前提错误C.结论错误 D.正确10.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.已知点F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N,若M是FN的中点,则M点的纵坐标为()A.2 B.4 C.±2 D.±412.若且;则的展开式的系数是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的前项和为,,,则数列的前项和为__________.14.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价(元)456789销量(件)908483807568由表中数据,求得线性回归方程为,则实数______.15.随机变量的概率分布为,其中是常数,则__________.16.设复数满足,其中为虚数单位,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设命题实数满足();命题实数满足(1)若且p∧q为真,求实数的取值范围;(2)若¬q是¬p的充分不必要条件,求实数的取值范围.18.(12分)如图四棱锥中,底面是正方形,,,且,为中点.(1)求证:平面;(2)求二面角的余弦值.19.(12分)如图所示,在以为直径的半圆周上,有异于的六个点,直径上有异于的四个点.则:(1)以这12个点(包括)中的4个点为顶点,可作出多少个四边形?(2)以这10个点(不包括)中的3个点为顶点,可作出多少个三角形?20.(12分)在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(I)求曲线的普通方程和直线的直角坐标方程;(II)求曲线上的点到直线的距离的最大值.21.(12分)在中,角的对边分别.(1)求;(2)若,求的周长.22.(10分)在中,内角的对边分别为,已知,且.(1)求角的大小;(2)若,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:设大正方形的边长为1,其内切圆的直径为1,则小正方形的边长为,从而阴影部分的面积为,由此利用几何概型能求出在大正方形内随机取一点,则此点取自阴影部分的概率.详解:设大正方形的边长为1,其内切圆的直径为1,则小正方形的边长为,所以大正方形的面积为1,圆的面积为,小正方形的面积为,则阴影部分的面积为,所以在大正方形内随机取一点,则此点取自阴影部分的概率.点睛:本题主要考查了面积比的几何概型及其概率的计算问题,其中根据题意,准确求解阴影部分的面积是解答本题的关键,着重考查了推理与运算能力,以及函数与方程思想的应用,属于基础题.2、D【解题分析】
求出甲乙两地的球心角,根据比例关系即可得出答案。【题目详解】地球表面上从甲地(北纬45°东经120°)到乙地(北纬45°西经150°),乙两地对应的AB的纬圆半径是,经度差纬90°,所以AB=R,球心角为60°,最短距离为【题目点拨】求出甲乙两地的球心角,根据比例关系即可得出答案。3、B【解题分析】试题分析:事件A不包含没有次品或只有一件次品,即都是正品或一件次品9件正品,所以事件A的对立事件为至多一件次品.故B正确.考点:对立事件.4、D【解题分析】对于①,,所以,故①正确;对于②,当,有,而由有,因为,所以是的充分不必要条件,故②正确;对于③,由已知,正态密度曲线的图象关于直线对称,且所以,故③正确.点睛:本题主要考查了条件概率,充分必要条件,正态分布等,属于难题.这几个知识点都是属于难点,容易做错.5、D【解题分析】
先求出函数在区间上的解析式,利用二次函数的性质可求出函数在区间上的最小值.【题目详解】由题意可知,函数是以为周期的周期函数,设,则,则,即当时,,可知函数在处取得最小值,且最小值为,故选D.【题目点拨】本题考查函数的周期性以及函数的最值,解决本题的关键就是根据周期性求出函数的解析式,并结合二次函数的基本性质求解,考查计算能力,属于中等题.6、C【解题分析】
连结BD,在中,可以作于O,并延长交CD于F,得到成立,得到A正确;由翻折中,保持不变,可得到B正确;根据翻折过程中,,可得到C错误;根据翻折过程中,保持不变,假设成立,得到平面ABD,结合题中条件,进而可得出结果.【题目详解】对于A,连结BD,在中,可以作于O,并延长交CD于F,则成立,翻折过程中,这个垂直关系保持不变,故A正确;对于B,在翻折过程中,保持不变,当时,有平面,从而,此时,AD=1,AB=2,BD=,故B正确;对于C,在翻折过程中,保持不变,若成立,则平面CDF,从而,AD=1,AC=,得CD=2,在翻折过程中,,即CD<2,所以,CD=2不成立,C不正确;对于D,在翻折过程中,保持不变,若成立,则平面ABD,从而,设此时,则BF=,BD=,只要,BD就存在,所以D正确选C.【题目点拨】本题主要考查空间中直线与直线的位置关系,熟记线面垂直的判定定理与性质定理即可,属于常考题型.7、D【解题分析】
根据题目条件,构造函数,求出的导数,利用“任意的满足”得出的单调性,即可得出答案。【题目详解】由题意知,构造函数,则。当时,当时,恒成立在单调递增,则,化简得,无法判断A选项是否成立;,化简得,故B选项不成立;,化简得,故C选项不成立;,化简得,故D选项成立;综上所述,故选D。【题目点拨】本题主要考查了构造函数法证明不等式,常利用导数研究函数的单调性,再由单调性证明不等式,是函数、导数、不等式综合中的一个难点。8、D【解题分析】试题分析:由,得,故选D.考点:复数的运算.9、D【解题分析】
分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论是否都正确,根据三个方面都正确,得到结论.详解:∵所有9的倍数都是3的倍数,某奇数是9的倍数,故某奇数是3的倍数,大前提:所有9的倍数都是3的倍数,小前提:某奇数是9的倍数,结论:故某奇数是3的倍数,∴这个推理是正确的,故选D.点睛:该题考查的是有关演绎推理的定义问题,在解决问题的过程中,需要先分清大前提、小前提和结论分别是什么,之后结合定义以及对应的结论的正确性得出结果.10、D【解题分析】取,则,但,故;取,则,但是,故,故“”是“”的既不充分也不必要条件,选D.11、C【解题分析】
求出抛物线的焦点坐标,推出M的坐标,然后求解,得到答案.【题目详解】由题意,抛物线的焦点,是上一点,的延长线交轴于点,若为的中点,如图所示,可知的横坐标为1,则的纵坐标为,故选C.【题目点拨】本题主要考查了抛物线的简单性质的应用,着重考查了推理与运算能力,属于基础题.12、C【解题分析】
先根据求出,再代入,直接根据的展开式的第项为,即可求出展开式的系数。【题目详解】因为且所以展开式的第项为展开式中的系数为故选C【题目点拨】本题考查二项式展开式,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由,列出关于首项为,公差为的方程组,解方程求得,可得,利用等比数列的求和公式可得结果.【题目详解】设等差数列的首项为,公差为,则解得,所以,所以,所以是以2为首项,16为公比的等比数列,所以数列的前项和为,故答案为.【题目点拨】本题主要考查等差数列的通项公式以及等比数列的求和公式,属于中档题.等差数列基本量的运算是等差数列的一类基本题型,数列中的五个基本量一般可以“知二求三”,通过列方程组所求问题可以迎刃而解.14、106【解题分析】
求出样本中心坐标,代入回归方程即可求出值.【题目详解】解:,,将代入回归方程得,解得.故答案为:.【题目点拨】本题考查回归方程问题,属于基础题.15、【解题分析】
根据随机变量分布列概率和为1求出,求出,再由方差性质,即可求解.【题目详解】由题意得,则,∴,,,则,,∴.故答案为:【题目点拨】本题考查离散型随机变量分布列性质、期望、方差以及方差的性质,考查计算求解能力,属于中档题.16、【解题分析】分析:由题意首先求得复数z,然后求解其模即可.详解:由复数的运算法则有:,则,.故答案为.点睛:本题主要考查复数的运算法则,复数的模的计算等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】试题分析:(1)若a=1,分别求出p,q成立的等价条件,利用且p∧q为真,求实数x的取值范围;(2)利用¬p是¬q的充分不必要条件,即q是p的充分不必要条件,求实数a的取值范围.试题解析:(1)由得,又,所以,当时,,即为真时实数的取值范围为.为真时实数的取值范围是,若为真,则真真,所以实数的取值范围是.(2)是的充分不必要条件,即,等价于,设,,则是的真子集;则,且所以实数的取值范围是.18、(1)证明见解析;(2).【解题分析】
(1)推导出,,从而平面,进而.求出,由此能证明平面.(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出二面角的正弦值.【题目详解】(1)∵底面为正方形,∴,又,,∴平面,∴.同理,,∴平面.(2)建立如图的空间直角坐标系,不妨设正方形的边长为2.则,,,设为平面的一个法向量,又,,,令,,得同理是平面的一个法向量,则.∴二面角的余弦值为.【题目点拨】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.19、(1)360;(2)116.【解题分析】分析:(1)构成四边形,需要四个点,且无三点共线,可以分成三类,将三类情况加到一起即可;(2)类似于(1)可分三种情况讨论得三角形个数为.详解:(1)构成四边形,需要四个点,且无三点共线,可以分成三类:①四个点从中取出,有个四边形;②三个点从中取出,另一个点从,中取出,有个四边形;③二个点从中取出,另外二个点从,中取出,有个四边形.故满足条件的四边形共有(个).(2)类似于(1)可分三种情况讨论得三角形个数为(个).点睛:排列与组合问题要区分开,若题目要求元素的顺序则是排列问题,排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素,高考中常见的排列组合问题还有分组分配问题,即不同元素分到不同组内时,通常先分组后分配.20、(I),;(II).【解题分析】
(I)曲线C的参数方程消去参数,能求出曲线C的普通方程;由直线l的极坐标方程,能求出直线l的直角坐标方程.(II)在曲线C上任取一点利用点到直线的距离公式能求出曲线C上的点到直线l的最小距
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度电影投资融资居间服务合同
- 水源管道规划方案
- 立杆架线施工方案
- 桥面吊装施工方案
- 2024食品公司产品线扩建合同
- 有机发光二极管的驱动与控制-深度研究
- 大数据在健保代理应用-深度研究
- 二零二四年度债权转让与债权处置三方执行合同3篇
- 市政道路围挡施工方案
- 二零二四年度艺术品拍卖及买卖代理合同3篇
- 机电安装工程安全管理
- 2024年上海市第二十七届初中物理竞赛初赛试题及答案
- 信息技术部年终述职报告总结
- 高考满分作文常见结构完全解读
- 理光投影机pj k360功能介绍
- 六年级数学上册100道口算题(全册完整版)
- 八年级数学下册《第十九章 一次函数》单元检测卷带答案-人教版
- 帕萨特B5维修手册及帕萨特B5全车电路图
- 小学五年级解方程应用题6
- 年月江西省南昌市某综合楼工程造价指标及
- 作物栽培学课件棉花
评论
0/150
提交评论