版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届全国数学高二第二学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题;命题.若为假命题,为真命题,则实数的取值范围是()A. B.或C.或 D.或2.若,则()A. B. C. D.3.观察两个变量(存在线性相关关系)得如下数据:则两变量间的线性回归方程为()A. B. C. D.4.在建立两个变量与的回归模型时,分别选择了4个不同的模型,这四个模型的相关系数分别为0.25、0.50、0.98、0.80,则其中拟合效果最好的模型是()A.模型1 B.模型2 C.模型3 D.模型45.设满足约束条件,若,且的最大值为,则()A. B. C. D.6.定义在上的函数若满足:①对任意、,都有;②对任意,都有,则称函数为“中心捺函数”,其中点称为函数的中心.已知函数是以为中心的“中心捺函数”,若满足不等式,当时,的取值范围为()A. B. C. D.7.下列函数中,既是奇函数又在内单调递增的函数是()A. B. C. D.8.设锐角的三个内角的对边分别为且,,则周长的取值范围为()A. B. C. D.9.已知椭圆的两个焦点为,且,弦过点,则的周长为()A. B. C. D.10.不等式的解集是()A.或 B.C.或 D.11.已知函数在上恒不大于0,则的最大值为()A. B. C.0 D.112.关于“斜二测”画图法,下列说法不正确的是()A.平行直线的斜二测图仍是平行直线B.斜二测图中,互相平行的任意两条线段的长度之比保持原比例不变C.正三角形的直观图一定为等腰三角形D.在画直观图时,由于坐标轴的选取不同,所得的直观图可能不同二、填空题:本题共4小题,每小题5分,共20分。13.设离散型随机变量的概率分布如下:则的值为__________.14.已知纯虚数满足(其中是虚数单位),则__________.15.为贯彻教育部关于全面推进素质教育的精神,某学校推行体育选修课.甲、乙、丙、丁四个人分别从太极拳、足球、击剑、游泳四门课程中选择一门课程作为选修课,他们分别有以下要求:甲:我不选太极拳和足球;乙:我不选太极拳和游泳;丙:我的要求和乙一样;丁:如果乙不选足球,我就不选太极拳.已知每门课程都有人选择,且都满足四个人的要求,那么选击剑的是___________.16.已知f(x)是奇函数,且当x∈(0,2)时,f(x)=lnx-ax(),当x∈(-2,0)时,f(x)的最小值是1,则a=__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)山西省2021年高考将实施新的高考改革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分。根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为共8个等级.参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、24%、16%、7%、3%.等级考试科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到八个分数区间,得到考生的等级成绩。举例说明1:甲同学化学学科原始分为65分,化学学科等级的原始分分布区间为,则该同学化学学科的原始成绩属等级,而等级的转换分区间为那么,甲同学化学学科的转换分为:设甲同学化学科的转换等级分为,求得.四舍五入后甲同学化学学科赋分成绩为66分。举例说明2:乙同学化学学科原始分为69分,化学学科等级的原始分分布区间为则该同学化学学科的原始成绩属等级.而等级的转换分区间为这时不用公式,乙同学化学学科赋分成绩直接取下端点70分。现有复兴中学高一年级共3000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布。且等级为所在原始分分布区间为,且等级为所在原始分分布区间为,且等级为所在原始分分布区间为(1)若小明同学在这次考试中物理原始分为84分,小红同学在这次考试中物理原始分为72分,求小明和小红的物理学科赋分成绩;(精确到整数).(2)若以复兴中学此次考试频率为依据,在学校随机抽取4人,记这4人中物理原始成绩在区间的人数,求的数学期望和方差.(精确到小数点后三位数).附:若随机变量满足正态分布,给出以下数据,18.(12分)△ABC的内角A,B,C的对边分别为,且.(1)求角A的大小;(2)求△ABC的面积的最大值.19.(12分)已知函数.(1)当时,讨论函数的单调性;(2)当,时,对任意,都有成立,求实数的取值范围.20.(12分)如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A、B两点,已知A、B的横坐标分别为25(1)求tan(α-β)的值;(2)求α+β21.(12分)已知椭圆,若在,,,四个点中有3个在上.(1)求椭圆的方程;(2)若点与点是椭圆上关于原点对称的两个点,且,求的取值范围.22.(10分)已知函数.(1)当,时,求函数的值域;(2)若函数在上的最大值为1,求实数的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
首先解出两个命题的不等式,由为假命题,为真命题得命题和命题一真一假.【题目详解】命题,命题.因为为假命题,为真命题.所以命题和命题一真一假,所以或,选择B【题目点拨】本题主要考查了简易逻辑的问题,其中涉及到了不等式以及命题真假的判断问题,属于基础题.2、A【解题分析】
根据诱导公式和余弦的倍角公式,化简得,即可求解.【题目详解】由题意,可得,故选A.【题目点拨】本题主要考查了三角函数的化简求值问题,其中解答中合理配凑,以及准确利用诱导公式和余弦的倍角公式化简、运算是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解题分析】分析:根据表中数据,计算、,再由线性回归方程过样本中心点,排除A、C、D选项即可.详解:根据表中数据,得;=(﹣10﹣6.99﹣5.01﹣2.98+3.98+5+7.99+8.01)=0,=(﹣9﹣7﹣5﹣3+4.01+4.99+7+8)=0;∴两变量x、y间的线性回归方程过样本中心点(0,0),可以排除A、C、D选项,B选项符合题意.故选:B.点睛:本题考查了线性回归方程过样本中心点的应用问题,是基础题目.对于回归方程,一定要注意隐含条件,样本中心满足回归方程,再者计算精准,正确理解题意,应用回归方程对总体进行估计.4、C【解题分析】
相关系数的绝对值越靠近1,拟合效果越好,据此得到答案.【题目详解】四个模型的相关系数分别为0.25、0.50、0.98、0.80相关系数的绝对值越靠近1,拟合效果越好故答案选C【题目点拨】本题考查了相关系数,相关系数的绝对值越靠近1,拟合效果越好.5、B【解题分析】分析:由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解代入目标函数得答案.详解:由约束条件作出可行域如图:化目标函数为,由图可知,当直线过B时,直线在y轴上的截距最小,即z最大,联立,解得,,解得.故选:B.点睛:线性规划中的参数问题及其求解思路(1)线性规划中的参数问题,就是已知目标函数的最值或其他限制条件,求约束条件或目标函数中所含参数的值或取值范围的问题.(2)求解策略:解决这类问题时,首先要注意对参数取值的讨论,将各种情况下的可行域画出来,以确定是否符合题意,然后在符合题意的可行域里,寻求最优解,从而确定参数的值.6、C【解题分析】
先结合题中条件得出函数为减函数且为奇函数,由,可得出,化简后得出,结合可求出,再由结合不等式的性质得出的取值范围.【题目详解】由知此函数为减函数.由函数是关于的“中心捺函数”,知曲线关于点对称,故曲线关于原点对称,故函数为奇函数,且函数在上递减,于是得,.,.则当时,令m=x,y=n则:问题等价于点(x,y)满足区域,如图阴影部分,由线性规划知识可知为(x,y)与(0,0)连线的斜率,由图可得,,故选:C.【题目点拨】本题考查代数式的取值范围的求解,解题的关键就是分析出函数的单调性与奇偶性,利用函数的奇偶性与单调性将题中的不等关系进行转化,应用到线性规划的知识,考查分析问题和解决问题的能力,属于难题.7、D【解题分析】
由基本初等函数的单调性和奇偶性,对A、B、C、D各项分别加以验证,不难得到正确答案.【题目详解】解:对于A,因为幂函数y=x3是R上的增函数,所以y=﹣x3是(0,+∞)上的减函数,故A不正确;对于B,为偶函数,且在上没有单调性,所以B不正确;对于C,在区间(0,1)上是减函数,在区间(1,+∞)上是增函数,故C不正确;对于D,若f(x)=x|x|,则f(﹣x)=﹣x|x|=﹣f(x),说明函数是奇函数,而当x∈(0,+∞)时,f(x)=x2,显然是(0,+∞)上的增函数,故D正确;故选:D.【题目点拨】本题考查了函数奇偶性和单调性的判断与证明,属于基础题.8、C【解题分析】因为△为锐角三角形,所以,,,即,,,所以,;又因为,所以,又因为,所以;由,即,所以,令,则,又因为函数在上单调递增,所以函数值域为,故选C点睛:本题解题关键是利用正弦定理实现边角的转化得到周长关于角的函数关系,借助二次函数的单调性求最值,易错点是限制角的取值范围.9、D【解题分析】
求得椭圆的a,b,c,由椭圆的定义可得△ABF2的周长为|AB|+|AF2|+|BF2|=4a,计算即可得到所求值.【题目详解】由题意可得椭圆+=1的b=5,c=4,a==,由椭圆的定义可得|AF1|+|AF2|=|BF1|+|BF2|=2a,即有△ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=4a=4.故选D.【题目点拨】本题考查三角形的周长的求法,注意运用椭圆的定义和方程,定义法解题是关键,属于基础题.10、D【解题分析】
先求解出不等式,然后用集合表示即可。【题目详解】解:,即,即,故不等式的解集是,故选D。【题目点拨】本题是集合问题,解题的关键是正确求解绝对值不等式和规范答题。11、A【解题分析】
先求得函数导数,当时,利用特殊值判断不符合题意.当时,根据的导函数求得的最大值,令这个最大值恒不大于零,化简后通过构造函数法,利用导数研究所构造函数的单调性和零点,并由此求得的取值范围,进而求得的最大值.【题目详解】,当时,,则在上单调递增,,所以不满足恒成立;当时,在上单调递增,在上单调递减,所以,又恒成立,即.设,则.因为在上单调递增,且,,所以存在唯一的实数,使得,当时,;当时,,所以,解得,又,所以,故整数的最大值为.故选A.【题目点拨】本小题主要考查利用导数研究函数的单调性和最值,考查构造函数法,考查零点存在性定理,考查化归与转化的数学思想方法,属于中档题.12、C【解题分析】
根据斜二测画法的特征,对选项中的命题进行分析、判断正误即可.【题目详解】解:对于A,平行直线的斜二测图仍是平行直线,A正确;对于B,斜二测图中,互相平行的任意两条线段的长度之比保持原比例不变,B正确;对于C,正三角形的直观图不一定为等腰三角形,如图所示;∴C错误;对于D,画直观图时,由于坐标轴的选取不同,所得的直观图可能不同,D正确.故选:C.【题目点拨】本题考查了斜二测画法的特征与应用问题,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:离散型随机变量的概率之和为1详解:解得:。点睛:离散型随机变量的概率之和为1,是分布列的性质。14、【解题分析】设,,整理得,15、丙【解题分析】
列出表格,用√表示已选的,用×表示未选的课程,逐个将每门课程所选的人确定下来,即可得知选击剑的人是谁。【题目详解】在如下图中,用√表示该门课程被选择,用×表示该门课程未选,且每行每列只有一个勾,太极拳足球击剑游泳甲××√乙×√②×丙×√×丁√①从上述四个人的要求中知,太极拳甲、乙、丙都不选择,则丁选择太极拳,丁所说的命题正确,其逆否命题为“我选太极拳,那么乙选足球”为真,则选足球的是乙,由于乙、丙、丁都为选择游泳,那么甲选择游泳,最后只有丙选择击剑。故答案为:丙。【题目点拨】本题考查合情推理,充分利用假设法去进行论证,考查推理论证能力,属于中等题。16、1【解题分析】由题意,得x∈(0,2)时,f(x)=lnx-ax(a>)有最大值-1,f′(x)=-a,由f′(x)=0得x=∈(0,2),且x∈(0,)时,f′(x)>0,f(x)单调递增,x∈(,2)时,f′(x)<0,f(x)单调递减,则f(x)max=f()=ln-1=-1,解得a=1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)小明82分,小红70分;(2)1.504,0.938【解题分析】
(1)根据题意列式求解(2)先确定区间,再根据正态分布求特定区间概率,最后根据二项分布求期望与方差.【题目详解】解(1)小明同学且等级为,设小明转换后的物理等级分为,求得.小明转换后的物理成绩为82小红同学且等级为,且等级为所在原始分分布区间为,小红为本等级最低分72,则转换后的物理成绩为70分。(2)物理考试原始成绩等级为所在原始分分布区间为,人数所占比例为24%,又因为物理考试原始成绩基本服从正态分布,当原始分时,人数所占比例为则随机抽取一个物理原始成绩在区间的概率为由题可得【题目点拨】本题考查新定义理解、利用正态分布求特定区间概率以后利用二项分布求期望与方差,考查综合分析求解能力,属中档题.18、(1)(2)最大值.【解题分析】
(1)利用正弦定理得,再由余弦定理求得,即可求解;(2)利用余弦定理和基本不等式,求得的最大值,再利用三角形的面积公式,即可求解面积的最大值,得到答案.【题目详解】在的内角A,B,C的对边分别为且,且.整理得,利用正弦定理得,又由余弦定理,得,由于,解得:.由于,所以,整理得:,所以.当且仅当时,的面积有最大值.【题目点拨】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,要抓住能够利用某个定理的信息,一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理,着重考查了运算与求解能力,属于基础题.19、(1)见解析;(2).【解题分析】
1通过讨论a的范围,求出函数的单调区间即可;2原问题等价于,成立,可得,可得,即,设,,可得在单调递增,且,即可得不等式的解集即可.【题目详解】1函数的定义域为.当时,,所以.当时,,所以函数在上单调递增.当时,令,解得:,当时,,所以函数在上单调递减;当时,,所以函数在上单调递增.综上所述,当,时,函数在上单调递增;当,时,函数在上单调递减,在上单调递增.2对任意,,有成立,,,成立,,时,.当时,,当时,,在单调递减,在单调递增,,,,设,,.在递增,,可得,,即,设,,在恒成立.在单调递增,且,不等式的解集为.实数b的取值范围为.【题目点拨】本题考查了导数的应用,利用导数研究函数的单调区间,恒成立问题,考查了转化思想、运算能力,属于压轴题.20、(1)17;(2)α+β=【解题分析】(1)先运用三角函数定义与同角三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024商场美食节临时摊位租赁合同
- 2024年度健身器材购销合同
- 2024年度国际贸易仲裁与诉讼合同
- 2024年定制LED高炮广告牌建设合同
- 2024乙公司向甲方提供跨境电商服务的详细合同条款
- 2024年度grc材料研发与技术转让合同
- 航天英雄课件教学课件
- 2024年住宅租赁协议:个人与房东间的权利义务规定
- 04版0千伏电力施工合同样本
- 2024年工程招投标合同管理实操手册
- 道路运输企业职业安全健康管理工作台帐(全版通用)参考模板范本
- 中国小学生生命教育调查问卷
- 通用模板-封条模板
- 集团公司后备人才选拔培养暂行办法
- 第五章旅游餐饮设计ppt课件
- 从马克思主义视角看当前高房价
- 长沙市某办公建筑的冰蓄冷空调系统的设计毕业设计
- 不抱怨的世界(课堂PPT)
- 企业盈利能力分析——以青岛啤酒股份有限公司为例
- 消火栓灭火器检查记录表
- 岸墙、翼墙及导水墙砼浇筑方案
评论
0/150
提交评论