2024届河南省郑州市第一〇六中学数学高二第二学期期末综合测试试题含解析_第1页
2024届河南省郑州市第一〇六中学数学高二第二学期期末综合测试试题含解析_第2页
2024届河南省郑州市第一〇六中学数学高二第二学期期末综合测试试题含解析_第3页
2024届河南省郑州市第一〇六中学数学高二第二学期期末综合测试试题含解析_第4页
2024届河南省郑州市第一〇六中学数学高二第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河南省郑州市第一〇六中学数学高二第二学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从甲、乙、丙、丁四人中选取两人参加某项活动,则甲、乙两人有且仅有一人入选的概率为()A. B. C. D.2.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为,此时四面体ABCD外接球表面积为()A. B. C. D.3.设,则二项式展开式的常数项是()A.1120 B.140 C.-140 D.-11204.设关于的不等式组表示的平面区域内存在点满足,则的取值范围是()A. B. C. D.5.在区间上任取两个实数a,b,则函数无零点的概率为()A. B. C. D.6.已知,则的大小关系为()A. B. C. D.7.已知角的顶点在坐标原点,始边与轴正半轴重合,终边在直线上,则()A. B. C. D.8.下列命题中正确的个数()①“∀x>0,2x>sinx”的否定是“∃x0≤0,2x0≤sinx0”;②用相关指数R2可以刻画回归的拟合效果,A.0 B.1 C.2 D.39.已知函数f(x)=13x3-12A.(0,1) B.(3,+∞) C.(0,2) D.(1,+∞)10.在区间[-1,4]内取一个数x,则≥的概率是()A. B. C. D.11.平面内有两个定点和,动点满足,则动点的轨迹方程是().A. B.C. D.12.设数列的前项和为,若,且,则()A.2019 B. C.2020 D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数,则使得成立的x的取值范围是_____.14.一个直三棱柱的每条棱长都是,且每个顶点都在球的表面上,则球的表面积为________15.已知椭圆与双曲线具有相同的焦点,,且在第一象限交于点,设椭圆和双曲线的离心率分别为,,若,则的最小值为__________.16.对具有线性相关关系的变量,有一组观测数据(),其回归直线方程是,且,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,其中左焦点.(1)求出椭圆的方程;(2)若直线与曲线交于不同的两点,且线段的中点在曲线上,求的值.18.(12分)已知函数,其中.(1)若,,求的值;(2)若,化简:.19.(12分)在一次考试中某班级50名学生的成绩统计如表,规定75分以下为一般,大于等于75分小于85分为良好,85分及以上为优秀.经计算样本的平均值,标准差.为评判该份试卷质量的好坏,从其中任取一人,记其成绩为,并根据以下不等式进行评判①;②;③评判规则:若同时满足上述三个不等式,则被评为优秀试卷;若仅满足其中两个不等式,则被评为合格试卷;其他情况,则被评为不合格试卷.(1)试判断该份试卷被评为哪种等级;(2)按分层抽样的方式从3个层次的学生中抽出10名学生,再从抽出的10名学生中随机抽出4人进行学习方法交流,用随机变量表示4人中成绩优秀的人数,求随机变量的分布列和数学期望.20.(12分)已知命题:实数满足(其中),命题:实数满足(1)若,且与都为真命题,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围.21.(12分)已知函数,.(Ⅰ)当时,求的单调区间与极值;(Ⅱ)当时,若函数在上有唯一零点,求的值22.(10分)设,且.(1)求的值;(2)求在区间上的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

算出总的个数和满足所求事件的个数即可【题目详解】从甲、乙、丙、丁四人中选取两人参加某项活动,总共有种情况其中满足甲乙两人仅有一人入选的有种情况所以甲、乙两人有且仅有一人入选的概率为故选:B【题目点拨】本题考查了古典概型的求法,组合问题的简单应用,属于基础题2、C【解题分析】分析:三棱锥的三条侧棱,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.详解:根据题意可知三棱锥的三条侧棱,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,三棱柱中,底面,,,的外接圆的半径为,由题意可得:球心到底面的距离为.球的半径为.外接球的表面积为:.故选:C.点睛:考查空间想象能力,计算能力.三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.3、A【解题分析】

分析:利用微积分基本定理求得,先求出二项式的展开式的通项公式,令的指数等于,求出的值,即可求得展开式的常数项.详解:由题意,二项式为,设展开式中第项为,,令,解得,代入得展开式中可得常数项为,故选A.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.4、D【解题分析】

由约束条件,作出可行域如上图所示阴影部分,要使可行域存在,必有,可行域包括上的点,只要边界点在直线的上方,且在直线的下方,故有,解得,选D.点睛:平面区域的最值问题是线性规划的一类重要题型,在解答本题时,关键是画好可行域,分析目标函数的几何意义,然后利用数形结合的思想,找出点的坐标,即可求出答案.5、D【解题分析】

在区间上任取两个实数a,b,其对应的数对构成的区域为正方形,所求事件构成的区域为梯形区域,利用面积比求得概率.【题目详解】因为函数无零点,所以,因为,所以,则事件函数无零点构成的区域为梯形,在区间上任取两个实数a,b所对应的点构成的区域为正方形,所以函数无零点的概率.【题目点拨】本题考查几何概型计算概率,考查利用面积比求概率,注意所有基本事件构成的区域和事件所含基本事件构成的区域.6、A【解题分析】分析:由,,,可得,,则,利用做差法结合基本不等式可得结果.详解:,,则,即,综上,故选A.点睛:本题主要考查对数函数的性质、指数函数的单调性及比较大小问题,属于难题.解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间);二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用.7、A【解题分析】

根据直线斜率与倾斜角的关系求出tanθ的值,原式利用诱导公式化简,再利用同角三角函数间的基本关系变形,将tanθ的值代入计算即可求出值.【题目详解】解:由已知可得,tanθ=2,则原式1.故选A.【题目点拨】此题考查了诱导公式的作用,三角函数的化简求值,以及直线斜率与倾斜角的关系,熟练掌握诱导公式是解本题的关键.8、C【解题分析】

根据含量词命题的否定可知①错误;根据相关指数的特点可知R2越接近0,模型拟合度越低,可知②错误;根据四种命题的关系首先得到逆命题,利用不等式性质可知③正确;分别在m=0和m≠0的情况下,根据解集为R确定不等关系,从而解得m【题目详解】①根据全称量词的否定可知“∀x>0,2x>sinx”的否定是“∃x②相关指数R2越接近1,模型拟合度越高,即拟合效果越好;R2越接近③若“a>b>0,则3a>3b>0④当m=0时,mx2-2当m≠0时,若mx2-2m+1解得:m≥1,则④正确.∴正确的命题为:③④本题正确选项:C【题目点拨】本题考查命题真假性的判断,涉及到含量词命题的否定、四种命题的关系及真假性的判断、相关指数的应用、根据一元二次不等式解集为R求解参数范围的知识.9、B【解题分析】

由三次函数的性质,求出导函数,确定函数的极值,最后由极大值大于0,极小值小于0可得a的范围.【题目详解】f'(x)=x易知x<-a或x>1时f'(x)>0,当-a<x<1时,f'(x)<0,∴f(x)极大值=f(-a)=∴16a3故选B.【题目点拨】本题考查函数的零点,考查用导数研究函数的极值.求极值时要注意在极值点的两侧,f'(x)的符号要相反.10、D【解题分析】

先解不等式,确定解集的范围,然后根据几何概型中的长度模型计算概率.【题目详解】因为,所以,解得,所以.【题目点拨】几何概型中长度模型(区间长度)的概率计算:.11、D【解题分析】

由已知条件知,点的运动轨迹是以,为焦点的双曲线右支,从而写出轨迹的方程即可.【题目详解】解:由可知,点的运动轨迹是以,为焦点的双曲线右支,,,,.所以动点的轨迹方程是.故选:D.【题目点拨】本题考查双曲线的定义,求双曲线的标准方程,属于基础题.12、D【解题分析】

用,代入已知等式,得,可以变形为:,说明是等差数列,故可以求出等差数列的通项公式,最后求出的值.【题目详解】因为,所以,所以数列是以为公差的等差数列,,所以等差数列的通项公式为,故本题选D.【题目点拨】本题考查了公式的应用,考查了等差数列的判定义、以及等差数列的通项公式.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:由题意得,函数的定义域为,因为,所以函数为偶函数,当时,为单调递增函数,所以根据偶函数的性质可知:使得成立,则,解得.考点:函数的图象与性质.【方法点晴】本题主要考查了函数的图象与性质,解答中涉及到函数的单调性和函数的奇偶性及其简单的应用,解答中根据函数的单调性与奇偶性,结合函数的图象,把不等式成立,转化为,即可求解,其中得出函数的单调性是解答问题的关键,着重考查了学生转化与化归思想和推理与运算能力,属于中档试题.14、【解题分析】

设此直三棱柱两底面的中心分别为,则球心为线段的中点,利用勾股定理求出球的半径,由此能求出球的表面积.【题目详解】∵一个直三棱柱的每条棱长都是,且每个顶点都在球的球面上,∴设此直三棱柱两底面的中心分别为,则球心为线段的中点,设球的半径为,则∴球的表面积.故答案为:.【题目点拨】本题考查球的表面积的求法,空间思维能力,考查转化化归思想、数形结合思想、属于中档题.15、.【解题分析】分析:通过椭圆与双曲线的定义,用和表示出的长度,根据余弦定理建立的关系式;根据离心率的定义表示出两个离心率的平方和,利用基本不等式即可求得最小值。详解:,所以解得在△中,根据余弦定理可得代入得化简得而所以的最小值为点睛:本题考查了圆锥曲线的综合应用。结合余弦定理、基本不等式等对椭圆、双曲线的性质进行逐步分析,主要是对圆锥曲线的“交点”问题重点分析和攻破,属于难题。16、【解题分析】

由题意求得样本中心点,代入回归直线方程即可求出的值【题目详解】由已知,代入回归直线方程可得:解得故答案为【题目点拨】本题考查了线性回归方程,求出横坐标和纵坐标的平均数,写出样本中心点,将其代入线性回归方程即可求出结果三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解题分析】

(1)根据离心率和焦点坐标求出,从而得到椭圆方程;(2)将直线方程与椭圆方程联立,利用韦达定理表示出点横坐标,代入直线得到坐标;再将代入曲线方程,从而求得.【题目详解】(1)由题意得:,解得:,所以椭圆的方程为:(2)设点,,线段的中点为由,消去得由,解得:所以,因为点在曲线上所以解得:或【题目点拨】本题考查直线与椭圆的综合应用问题,关键是能够通过联立,将中点坐标利用韦达定理表示出来,从而利用点在曲线上构造方程,求得结果.18、(1)(2)【解题分析】

(1)分别令,,利用二项展开式展开和,将两式相减可得出的值;(2)将代入,求得,当时,,当时,,当时,利用组合数公式可得,化简可得结果.【题目详解】(1),时,令得,令得可得;(2)若,,当时,,当时,,当时,,·····综上,.【题目点拨】该题考查的是有关二项式定理的问题,涉及到的知识点有利用赋值法求对应系数的和,利用组合数公式化简相应的式子,属于中档题目.19、(1)该份试卷应被评为合格试卷;(2)见解析【解题分析】

(1)根据频数分布表,计算,,的值,由此判断出“该份试卷应被评为合格试卷”.(2)利用超几何分布分布列计算公式,计算出分布列,并求得数学期望.【题目详解】(1),,,因为考生成绩满足两个不等式,所以该份试卷应被评为合格试卷.(2)50人中成绩一般、良好及优秀的比例为,所以所抽出的10人中,成绩优秀的有3人,所以的取值可能为0,1,2,3;;;.所以随机变的分布列为0123故.【题目点拨】本小题主要考查正态分布的概念,考查频率的计算,考查超几何分布的分布列以及数学期望的计算,属于中档题.20、(1);(2).【解题分析】

记命题:,命题:(1)当时,求出,,根据与均为真命题,即可求出的范围;(2)求出,,通过是的必要不充分条件,得出,建立不等式组,求解即可.【题目详解】记命题:,命题:(1)当时,,,与均为真命题,则,的取值范围是.(2),,是的必要不充分条件,集合,,解得,综上所述,的取值范围是.【题目点拨】1.命题真假的判断(1)真命题的判断方法:真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确地逻辑推理的一个过程,判断命题为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论