2024届黑龙江省鹤岗一中高二数学第二学期期末达标检测模拟试题含解析_第1页
2024届黑龙江省鹤岗一中高二数学第二学期期末达标检测模拟试题含解析_第2页
2024届黑龙江省鹤岗一中高二数学第二学期期末达标检测模拟试题含解析_第3页
2024届黑龙江省鹤岗一中高二数学第二学期期末达标检测模拟试题含解析_第4页
2024届黑龙江省鹤岗一中高二数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省鹤岗一中高二数学第二学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若抛物线上一点到焦点的距离是该点到轴距离的倍,则()A. B. C. D.2.已知,,则()A. B. C. D.3.已知随机变量服从正态分布,且,则()A.0.4 B.0.5 C.0.6 D.0.74.已知,“函数有零点”是“函数在上是减函数”的().A.充分不必要条件 B.必要不充分条件 C.充要条件 D.即不充分也不必要条件5.如图所示的电路有a,b,c,d四个开关,每个开关断开与闭合的概率均为且是相互独立的,则灯泡甲亮的概率为()A. B. C. D.6.函数的最小正周期是()A. B. C. D.7.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.458.下列函数既是偶函数,又在上为减函数的是()A. B. C. D.9.若x∈(0,1),a=lnx,b=,c=elnx,则a,b,c的大小关系为()A.b>c>a B.c>b>a C.a>b>c D.b>a>c10.若函数在区间上单调递增,则实数的取值范围是()A. B. C. D.11.已知函数与的图像有三个不同的公共点,其中为自然对数的底数,则实数的取值范围为()A. B. C. D.12.某个几何体的三视图如图所示(单位:m),则该几何体的表面积(结果保留π)为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,关于的不等式恒成立,则实数的取值范围是___.14.某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有种(用数字作答).15.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图),,,,,则这块菜地的面积为______.16.平面直角坐标系中,若点经过伸缩变换后的点Q,则极坐标系中,极坐标与Q的直角坐标相同的点到极轴所在直线的距离等于__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)讨论的单调性;(2)当时,,记函数在上的最大值为,证明:.18.(12分)设椭圆的右焦点为,点,若(其中为坐标原点).(Ⅰ)求椭圆的方程.(Ⅱ)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.19.(12分)已知函数.(1)求函数的最小值;(2)若恒成立,求实数的值;(3)设有两个极值点,求实数的取值范围,并证明.20.(12分)已知函数在处取得极小值1.(1)求的解析式;(2)求在上的最值.21.(12分)已知函数的导函数为,的图象在点处的切线方程为,且.(1)求函数的解析式;(2)若对任意的:,存在零点,求的取值范围.22.(10分)已知椭圆C:与圆M:的一个公共点为.(1)求椭圆C的方程;(2)过点M的直线l与椭圆C交于A、B两点,且A是线段MB的中点,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

利用抛物线的定义列等式可求出的值.【题目详解】抛物线的准线方程为,由抛物线的定义知,抛物线上一点到焦点的距离为,,解得,故选:D.【题目点拨】本题考查抛物线的定义,在求解抛物线上的点到焦点的距离,通常将其转化为该点到抛物线准线的距离求解,考查运算求解能力,属于中等题.2、C【解题分析】

由两角和的正切公式得出,结合平方关系求出,即可得出的值.【题目详解】,即由平方关系得出,解得:故选:C【题目点拨】本题主要考查了两角和的正切公式,平方关系,属于中档题.3、A【解题分析】∵P(x≤6)=0.9,∴P(x>6)=1﹣0.9=0.1.∴P(x<0)=P(x>6)=0.1,∴P(0<x<3)=0.5﹣P(x<0)=0.2.故答案为A.4、B【解题分析】试题分析:由题意得,由函数有零点可得,,而由函数在上为减函数可得,因此是必要不充分条件,故选B.考点:1.指数函数的单调性;2.对数函数的单调性;3.充分必要条件.5、C【解题分析】

由独立事件同时发生的概率公式计算.把组成一个事整体,先计算它通路的概率.【题目详解】记通路为事件,则,所以灯泡亮的概率为.故选:C.【题目点拨】本题考查相互独立事件同时发生的概率,由独立事件的概率公式计算即可.6、C【解题分析】

根据三角函数的周期公式,进行计算,即可求解.【题目详解】由角函数的周期公式,可得函数的周期,又由绝对值的周期减半,即为最小正周期为,故选C.【题目点拨】本题主要考查了三角函数的周期的计算,其中解答中熟记余弦函数的图象与性质是解答的关键,着重考查了计算与求解能力,属于基础题.7、A【解题分析】

试题分析:记“一天的空气质量为优良”,“第二天空气质量也为优良”,由题意可知,所以,故选A.考点:条件概率.8、B【解题分析】

通过对每一个选项进行判断得出答案.【题目详解】对于选项:函数在既不是偶函数也不是减函数,故排除;对于选项:函数既是偶函数,又在是减函数;对于选项:函数在是奇函数且增函数,故排除;对于选项:函数在是偶函数且增函数,故排除;故选:B【题目点拨】本题考查了函数的增减性以及奇偶性的判断,属于较易题.9、A【解题分析】

利用指数函数、对数函数的单调性直接求解.【题目详解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小关系为b>c>a.故选:A.【题目点拨】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题.10、D【解题分析】

试题分析:,∵函数在区间单调递增,∴在区间上恒成立.∴,而在区间上单调递减,∴.∴的取值范围是.故选D.考点:利用导数研究函数的单调性.11、B【解题分析】

将函数有三个公共点,转化为有三个解,再利用换元法设,整理为,画出函数图形得到答案.【题目详解】函数与的图像有三个不同的公共点即有三个解整理得:设,当单调递减,单调递增.如图所示:原式整理得到:图像有三个不同的公共点,即二次方程有两个解,一个小于0.一个在上或当时,当时,另一个零点在上,满足条件.故答案为B【题目点拨】本题考查了函数的零点问题,根据条件转化为方程的解,再利用换元法简化计算,本题综合性强,计算量大,意在考查学生的综合应用能力和计算能力.12、C【解题分析】分析:上面为球的二分之一,下面为长方体.面积为长方体的表面积与半球的面积之和减去半球下底面面积.详解:球的半径为1,故半球的表面积的公式为,半球下底面表面积为长方体的表面积为24,所以几何体的表面积为.点睛:组合体的表面积,要弄懂组合体的结构,哪些被遮挡,哪些是切口.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

对不等式进行因式分解,,利用分离变量法转化为对应函数最值,即得到答案.【题目详解】,即:恒成立所以故答案为【题目点拨】本题考查了不等式恒成立问题,因式分解是解题的关键.14、216【解题分析】

每种颜色的灯泡都至少用一个,即用了四种颜色的灯进行安装,分

3

步进行,第一步

,A

、B.

C

三点选三种颜色灯泡共有

种选法;第二步

,

A1

B1

C1

中选一个装第

4

种颜色的灯泡,有

3

种情况;第三步

,

为剩下的两个灯选颜色

,

假设剩下的为

B1

C1,

B1

A

同色

,

C1

只能选

B

点颜色;若

B1

C

同色

,

C1

有A.

B

处两种颜色可选,故为

B1

C1

选灯泡共有

3

种选法,得到剩下的两个灯有

3

种情况,则共有

×3×3=216

种方法.故答案为

21615、【解题分析】

首先由斜二测图形还原平面图形,然后求解其面积即可.【题目详解】由几何关系可得,斜二测图形中:,由斜二测图形还原平面图形,则原图是一个直角梯形,其中上下底的长度分别为1,2,高为,其面积.【题目点拨】本题主要考查斜二测画法,梯形的面积公式等知识,意在考查学生的转化能力和计算求解能力.16、3.【解题分析】

由点P的直角坐标求出伸缩变换后的点Q的坐标,将点Q的坐标看作极坐标,根据极坐标的性质距离为,将极坐标代入即可求出距离【题目详解】点P经伸缩变换后,点Q的坐标为,将点Q看作极坐标,则距离为.【题目点拨】本题考查点的伸缩变换以及极坐标的性质,注意题目中给出的点P的坐标为直角坐标,不要看错题目,并且注意距离为正数,要有绝对值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)单调递减区间为,单调递增区间为;(2)见解析.【解题分析】

(1)利用导数求函数的单调性即可;(2)对求导,得,因为,所以,令,求导得在上单调递增,,使得,进而得在上单调递增,在上单调递减;所以,令,求导得在上单调递增,进而求得m的范围.【题目详解】(1)因为,所以,当时,;当时,,故的单调递减区间为,单调递增区间为.(2)当时,,则,当时,,令,则,所以在上单调递增,因为,,所以存在,使得,即,即.故当时,,此时;当时,,此时.即在上单调递增,在上单调递减.则.令,,则.所以在上单调递增,所以,.故成立.【题目点拨】本题考查了利用导数求函数的单调性和取值范围,也考查了构造新函数,转化思想,属于中档题.18、(Ⅰ)(Ⅱ)的最大值为.【解题分析】试题分析:(Ⅰ)结合题意可得所以,由可解得,故得椭圆方程.(Ⅱ)设圆的圆心为,由向量的知识可得,从而将求的最大值转化为求的最大值.设是椭圆上的任意一点,可得,所以当时,取得最大值,从而的最大值为.试题解析:(I)由题意知,,,所以由,得,解得,所以椭圆的方程为.(II)设圆的圆心为,则.从而求的最大值转化为求的最大值.设是椭圆上的任意一点,则,所以,又点,所以.因为,所以当时,取得最大值,所以的最大值为.点睛:圆锥曲线中最值(范围)问题的解决方法若题目的条件和结论能体现一种明确的函数关系,则可建立目标函数,再求这个函数的最值.常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.19、(1)0;(2)1;(2),证明见解析.【解题分析】

(1)先求的定义域,然后对求导,令寻找极值点,从而求出极值与最值;(2)构造函数,又,则只需恒成立,再证在处取到最小值即可;(3)有两个极值点等价于方程在上有两个不等的正根,由此可得的取值范围,,由根与系数可知及范围为,代入上式得,利用导函数求的最小值即可.【题目详解】(1),,令G′(x)>0,解得x>1,此时函数G(x)单调递增,令G′(x)<0,解得0<x<1,此时函数G(x)单调递减,又G′(1)=0,∴x=1是函数G(x)的极小值点,也是最小值,且G(1)=0.当时,的最小值为0.(2)令,则.所以即恒成立的必要条件是,又,由得:.当时,,知,故,即恒成立.(3)由,得.有两个极值点、等价于方程在上有两个不等的正根,即:,解得.由,得,其中.所以.设,得,所以,即.【题目点拨】本题考查导数的应用,包括利用导数求函数的最值、利用导数求参数取值范围,不等式恒成立问题,往往通过构造函数,研究函数的最值,使问题得到解决.属于难题.20、(1)(2)最小值为1,最大值为2.【解题分析】

(1)利用导数,结合在处取得极小值1,求得的值,由此求得解析式.(2)根据在区间上的单调性,结合函数的极值以及区间端点的函数值,求得在区间上的最值.【题目详解】(1),由,得或.当时,,则在上单调递增,在上单调递减,符合题意,由,得;当时,,则在上单调递增,在上单调递减,在处取得极大值,不符合题意.所以.(2)由(1)知在上单调递增,在上单调递减,因为,所以的最小值为1,最大值为2.【题目点拨】本小题主要考查利用导数研究函数的极值,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论