版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市第八中学2024届数学高二下期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若随机变量,其均值是80,标准差是4,则和的值分别是()A.100,0.2 B.200,0.4 C.100,0.8 D.200,0.62.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种3.在某次考试中,甲、乙通过的概率分别为0.7,0.4,若两人考试相互独立,则甲未通过而乙通过的概率为A.0.28 B.0.12 C.0.42 D.0.164.已知变量x,y之间的一组数据如表:由散点图可知变量x,y具有线性相关,则y与x的回归直线必经过点()A.(2,2.5) B.(3,3) C.(4,3.5) D.(6,4.8)5.由曲线与直线,所围成的封闭图形面积为()A. B. C.2 D.6.不等式的解集是()A. B. C. D.7.对于两个平面和两条直线,下列命题中真命题是()A.若,则 B.若,则C.若,则 D.若,则8.将点的极坐标化成直角坐标为()A. B. C. D.9.如图所示的函数图象,对应的函数解析式可能是()A. B. C. D.10.函数y=﹣ln(﹣x)的图象大致为()A. B.C. D.11.将6位女生和2位男生平分为两组,参加不同的两个兴趣小组,则2位男生在同一组的不同的选法数为()A.70 B.40 C.30 D.2012.已如集合,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.从集合{1,2,…,30}中取出五个不同的数组成单调递增的等差数列,则所有符合条件的不同的数列个数是______.14.如图所示,阴影部分为曲线与轴围成的图形,在圆:内随机取一点,则该点取自阴影部分的概率为___.15.设各项均为正数的等比数列的前项和为,若,则数列的通项公式为____________.16.设随机变量的概率分布列如下图,则___________.1234三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角的对边分别为,且.(1)求角的大小;(2)若函数图象的一条对称轴方程为且,求的值.18.(12分)设函数.(Ⅰ)求的值;(Ⅱ)设,若过点可作曲线的三条切线,求实数的取值范围.19.(12分)2018年6月14日,第二十一届世界杯尼球赛在俄罗斯拉开了帷幕,某大学在二年级作了问卷调查,从该校二年级学生中抽取了人进行调查,其中女生中对足球运动有兴趣的占,而男生有人表示对足球运动没有兴趣.(1)完成列联表,并回答能否有的把握认为“对足球是否有兴趣与性别有关”?有兴趣没有兴趣合计男女合计(2)若将频率视为概率,现再从该校二年级全体学生中,采用随机抽样的方法每饮抽取名学生,抽取次,记被抽取的名学生中对足球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.附:20.(12分)为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取20名学生的成绩进行统计分析,结果如表:(记成绩不低于120分者为“成绩优秀”)分数[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]甲班频数1145432乙班频数0112664(1)由以上统计数据填写下面的2×2列联表,并判断是否有95%以上的把握认为“成绩优秀与教学方式有关”?甲班乙班总计成绩优秀成绩不优秀总计(2)现从上述样本“成绩不优秀”的学生中,抽取3人进行考核,记“成绩不优秀”的乙班人数为X,求X的分布列和期望.参考公式:,其中.临界值表P()0.1000.0500.0100.0012.7063.8416.63510.82821.(12分)已知椭圆:在左、右焦点分别为,,上顶点为点,若是面积为的等边三角形.(1)求椭圆的标准方程;(2)已知,是椭圆上的两点,且,求使的面积最大时直线的方程(为坐标原点).22.(10分)已知函数,(为自然对数的底数,).(1)判断曲线在点处的切线与曲线的公共点个数;(2)当时,若函数有两个零点,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据随机变量符合二项分布,根据二项分布的期望和方差的公式和条件中所给的期望和方差的值,得到关于和的方程组,解方程组得到要求的两个未知量.【题目详解】∵随机变量,其均值是80,标准差是4,∴由,∴.故选:C.【题目点拨】本题主要考查分布列和期望的简单应用,通过解方程组得到要求的变量,这与求变量的期望是一个相反的过程,但是两者都要用到期望和方差的公式.2、B【解题分析】
根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【题目详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有C3若甲村有2外科,1名护士,则有C3则总共的分配方案为2×(9+9)=2×18=36种,故选:B.【题目点拨】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.3、B【解题分析】
两人考试相互独立,所以是相互独立事件同时发生的概率,按照公式求即可.【题目详解】甲未通过的概率为0.3,则甲未通过而乙通过的概率为.选B.【题目点拨】本题考查相互独立事件同时发生的概率,属于基础题.4、C【解题分析】
计算出,结合回归直线方程经过样本中心点,得出正确选项.【题目详解】本题主要考查线性回归方程的特征,回归直线经过样本中心点.,故选C【题目点拨】本小题主要考查回归直线方程过样本中心点,考查平均数的计算,属于基础题.5、D【解题分析】根据题意作出所围成的图形,如图所示,图中从左至右三个交点分别为,所以题中所求面积为,故选D6、C【解题分析】
原不等式可转化为,等同于,解得或故选C.7、D【解题分析】
根据线面平行垂直的位置关系判断.【题目详解】A中可能在内,A错;B中也可能在内,B错;与可能平行,C错;,则或,若,则由得,若,则内有直线,而易知,从而,D正确.故选D.【题目点拨】本题考查线面平行与垂直的关系,在说明一个命题是错误时可举一反例.说明命题是正确时必须证明.8、C【解题分析】
利用极坐标与直角坐标方程互化公式即可得出.【题目详解】x=cos,y=sin,可得点M的直角坐标为.故选:C.【题目点拨】本题考查了极坐标与直角坐标方程互化公式,考查了推理能力与计算能力,属于基础题.9、D【解题分析】
对B选项的对称性判断可排除B.对选项的定义域来看可排除,对选项中,时,计算得,可排除,问题得解.【题目详解】为偶函数,其图象关于轴对称,排除B.函数的定义域为,排除.对于,当时,,排除故选D【题目点拨】本题主要考查了函数的对称性、定义域、函数值的判断与计算,考查分析能力,属于中档题.10、C【解题分析】
分析函数的定义域,利用排除法,即可求解,得到答案.【题目详解】由题意,函数的定义域为,所以可排除A、B、D,故选C.【题目点拨】本题主要考查了函数图象的识别问题,其中解答中合理使用函数的性质,利用排除法求解是解答的关键,着重考查了判断与识别能力,属于基础题.11、C【解题分析】
先确定与2位男生同组的女生,再进行分组排列,即得结果【题目详解】2位男生在同一组的不同的选法数为,选C.【题目点拨】本题考查分组排列问题,考查基本分析求解能力,属基础题.12、A【解题分析】
求出集合A,B,然后进行交集的运算即可.【题目详解】由题意,集合,∴集合.故选:A.【题目点拨】本题主要考查了描述法、区间表示集合的定义,绝对值不等式的解法,以及交集的运算,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】
根据题意,设满足条件的一个等差数列首项为a1,公差为d,d∈N*.确定d的可能取值为1,2,3,【题目详解】根据题意,设满足条件的一个等差数列首项为a1,公差为d,必有d∈则a5=a则d的可能取值为1,2,3,…,1.对于给定的d,a1=a5-4d≤30-4d,当a1分别取1,2,3,(如:d=1时,a1≤26,当a1分别取1,2,3,可得递增等差数列26个:1,2,3,4,5;2,3,…,6;…;26,21,…,30,其它同理).当d取1,2,3,…,1时,可得符合要求的等差数列的个数为:12故答案为:2.【题目点拨】本题主要考查了合情推理,涉及等差数列的性质,关键是确定d的取值范围,属于难题.14、【解题分析】分析:由题求出圆的面积,根据定积分求出曲线与轴围成的图形的面积,利用几何概型求出概率.详解:由题圆:的面积为曲线与轴围成的图形的面积为故该点取自阴影部分的概率为.即答案为.点睛:本题考查几何概型,考查利用定积分求面积,是缁.15、【解题分析】分析:根据基本量直接计算详解:因为数列为等比数列,所以解得:所以点睛:在等比数列问题中的未知量为首项和公比,求解这两个未知量需要两个方程,所以如果已知条件可以构造出来两个方程,则一定可以解出首项和公比,进而可以解决其他问题,因此基本量求解是这类问题的基本解法.16、【解题分析】
依题意可知,根据分布列计算可得;【题目详解】解:依题意可得故答案为:【题目点拨】本题考查离散型随机变量的分布列与和概率公式的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)由已知利用三角函数恒等变换的应用,正弦定理可求,即可求的值.(2)利用三角函数恒等变换的应用,可得,根据题意,得到,解得,得到函数的解析式,进而求得的值,利用三角函数恒等变换的应用可求的值.【题目详解】(1)由题意,根据正弦定理,可得,又由,所以,可得,即,又因为,则,可得,∵,∴.(2)由(1)可得,所以函数的图象的一条对称轴方程为,∴,得,即,∴,又,∴,∴.【题目点拨】本题主要考查了三角函数恒等变换的应用,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18、(Ⅰ)8(Ⅱ)【解题分析】
(Ⅰ)根据二项定理展开式展开,即可确定对应项的系数,即可求解.(Ⅱ)代入值后可求得的解析式,经过检验可知点不在曲线上,即可设切点坐标为,代入曲线方程并求得,由导数的几何意义及两点间斜率公式,可得方程,且由题意可知该方程有三个不同的实数根;分离参数并构造函数,进而求得,令求得极值点和极值,由直线截此图象有三个交点即可确定的取值范围.【题目详解】(Ⅰ)根据二项式定理展开式的应用,展开可得所以(Ⅱ)由题意因为点不在曲线上,所以可设切点为.则.因为,所以切线的斜率为.则,即.因为过点可作曲线的三条切线,所以方程有三个不同的实数解.分离参数,设函数,所以,令,可得,令,解得或,所以在单调递增,在单调递减.所以的极大值为,极小值为.用直线截此图象,当两图象有三个交点,即时,即可作曲线的三条切线.【题目点拨】本题考查了二项式定理展开式的简单应用,两点间斜率公式及导数的几何意义应用,分离参数及构造函数研究三次函数性质的综合应用,属于中档题.19、(1)有;(2).【解题分析】分析:(1)根据已知数据完成2×2列联表,计算,判断有的把握认为“对足球有兴趣与性别有关”.(2)先求得从大二学生中抽取一名学生对足球有兴趣的概率是,再利用二项分布求的分布列和数学期望.详解:(1)根据已知数据得到如下列联表:有兴趣没有兴趣合计男女合计根据列联表中的数据,得到,所以有的把握认为“对足球有兴趣与性别有关”.(2)由列联表中数据可知,对足球有兴趣的学生频率是,将频率视为概率,即从大二学生中抽取一名学生对足球有兴趣的概率是,有题意知,,,,从而的分布列为.点睛:(1)本题主要考查独立性检验,考查随机变量的分布列和期望,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)若~则20、(1)有以上的把握认为“成绩优秀与教学方式有关”.(2)见解析.【解题分析】
(1)根据以上统计数据填写列联表,根据列联表计算的观测值k,对照临界值得出结论;(2)由题意知的可能取值,计算对应的概率值,写出的分布列,求期望即可.【题目详解】(1)补充的列联表如下表:甲班乙班总计成绩优秀成绩不优秀总计根据列联表中的数据,得的观测值为,所以有以上的把握认为“成绩优秀与教学方式有关”.(2)的可能取值为,,,,,,,,所以的分布列为【题目点拨】本题考查了独立性检验的问题和离散型随机变量的分布列与期望问题,是中档题.21、解(1);(2)或.【解题分析】
(1)由是面积为的等边三角形,结合性质,列出关于、的方程组,求出、,即可得结果;(2)先证明直线的斜率存在,设直线的方程为,与椭圆方程联立消去,利用弦长公式可得,化简得.原点到直线的距离为,的面积,当最大时,的面积最大.由,利用二次函数的性质可得结果.【题目详解】(1)由是面积为的等边三角形,得,所以,,从而,所以椭圆的标准方程为.(2)由(1)知,当轴时,,则为椭圆的短轴,故有,,三点共线,不合题意.所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 运营业绩年度总结(12篇)
- 年终助理工作总结范文(3篇)
- 2024酒店采购人员个人工作计划(7篇)
- 会计人员的自荐信(5篇范例)
- 八年级家长会发言稿(19篇万能范文)
- 2024年房屋交易融资协议
- 《“忘”“记”“思”“念”语义演变及“忘记”“思念”词汇化研究》
- 《供应链金融与企业融资绩效关系研究》
- 2024年技术服务合同
- 公司项目工作总结范文(3篇)
- 与复旦大学合作协议书
- 人大代表为人民
- 第五单元(知识清单)【 新教材精讲精研精思 】 七年级语文上册 (部编版)
- 文明之痕:流行病与公共卫生知到章节答案智慧树2023年四川大学
- 钢结构设计原理全套PPT完整教学课件
- 《基于杜邦分析法周大福珠宝企业盈利能力分析报告(6400字)》
- 延安整风与马克思主义中国化
- 我国陆军专业知识讲座
- 煤矿机电运输安全培训课件
- 货车安全隐患排查表
- 学前教育职业规划书
评论
0/150
提交评论