吉林省吉林市吉林地区普通高中友好学校联合体第三十一届2024届数学高二第二学期期末质量跟踪监视试题含解析_第1页
吉林省吉林市吉林地区普通高中友好学校联合体第三十一届2024届数学高二第二学期期末质量跟踪监视试题含解析_第2页
吉林省吉林市吉林地区普通高中友好学校联合体第三十一届2024届数学高二第二学期期末质量跟踪监视试题含解析_第3页
吉林省吉林市吉林地区普通高中友好学校联合体第三十一届2024届数学高二第二学期期末质量跟踪监视试题含解析_第4页
吉林省吉林市吉林地区普通高中友好学校联合体第三十一届2024届数学高二第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省吉林市吉林地区普通高中友好学校联合体第三十一届2024届数学高二第二学期期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中,既是偶函数,又在区间上单调递减的函数是()A. B. C. D.2.已知全集,则A. B. C. D.3.计算=A. B. C. D.4.已知函数在上单调递减,则的取值范围是()A. B. C. D.5.若某空间几何体的三视图如图所示,则该几何体的体积为()A.2π+2 B.4π+2C.2π+ D.4π+6.从正方体六个面的对角线中任取两条作为一对,其中所成的角为的共有()A.24对 B.30对 C.48对 D.60对7.甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为和,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140分以上的概率为()A. B. C. D.8.若不等式2xlnx≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是()A.(-∞,0) B.(-∞,4] C.(0,+∞) D.[4,+∞)9.如图所示茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩单位:分,已知甲组数据的中位数为17,乙组数据的平均数为,则x、y的值分别为A.7、8 B.5、7C.8、5 D.7、710.已知是虚数单位,则在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限11.在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是()A.甲 B.乙 C.丙 D.丁12.如图1为某省2019年1~4月快递义务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是()A.2019年1~4月的业务量,3月最高,2月最低,差值接近2000万件B.2019年1~4月的业务量同比增长率超过50%,在3月最高C.从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D.从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长二、填空题:本题共4小题,每小题5分,共20分。13.的不同正约数共有______个.14.一袋中有大小相同的4个红球和2个白球,给出下列结论:从中任取3球,恰有一个白球的概率是;从中有放回的取球6次,每次任取一球,则取到红球次数的方差为;从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为.其中所有正确结论的序号是______.15.设随机变量的分布列为为常数,则______16.样本中共有5个个体,其值分别为,0,1,2,1.则样本方差为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的离心率为,其中左焦点.(1)求出椭圆的方程;(2)若直线与曲线交于不同的两点,且线段的中点在曲线上,求的值.18.(12分)已知函数.(1)当时,解不等式;(2)当时,不等式对任意恒成立,求实数的取值范围.19.(12分)已知函数.(1)若函数的最小值为2,求实数的值;(2)若当时,不等式恒成立,求实数的取值范围.20.(12分)如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF//AC,AB=,CE=EF=1(Ⅰ)求证:AF//平面BDE;(Ⅱ)求证:CF⊥平面BDE;21.(12分)已知实数为整数,函数,(1)求函数的单调区间;(2)如果存在,使得成立,试判断整数是否有最小值,若有,求出值;若无,请说明理由(注:为自然对数的底数).22.(10分)已知函数,且当时,取得极值为.(1)求的解析式;(2)若关于的方程在上有两个不同的实数解,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

根据函数单调性和奇偶性的性质分别对选项进行判断即可【题目详解】对于A,为奇函数,在区间为单调增函数,不满足题意;对于B,为偶函数,在区间上为单调递减的函数,故B满足题意;对于C,为偶函数,在区间上为周期函数,故C不满足题意;对于D,为偶函数,在区间为单调增函数,故D不满足题意;故答案选B【题目点拨】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.2、C【解题分析】

根据补集定义直接求得结果.【题目详解】由补集定义得:本题正确选项:【题目点拨】本题考查集合运算中的补集运算,属于基础题.3、B【解题分析】分析:根据复数乘法法则求结果.详解:选B.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为4、A【解题分析】

等价于在上恒成立,即在上恒成立,再构造函数并求g(x)的最大值得解.【题目详解】在上恒成立,则在上恒成立,令,,所以在单调递增,故g(x)的最大值为g(3)=.故.故选A【题目点拨】本题主要考查利用导数研究函数的单调性,考查利用导数研究不等式的恒成立问题,属于基础题.5、C【解题分析】

试题分析:由三视图知几何体是一个简单的组合体,上面是一个四棱锥,四棱锥的底面是一个正方形,对角线长是,侧棱长,高是,下面是一个圆柱,圆柱的底面直径是,高是,所以组合体的体积是,故选C.考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图及其体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中根据三视图得出上面一个四棱锥、下面是一个圆柱组成的组合体,得到几何体的数量关系是解答的关键,属于基础题.6、C【解题分析】试题分析:在正方体中,与上平面中一条对角线成的直线有,,,共八对直线,与上平面中另一条对角线的直线也有八对直线,所以一个平面中有16对直线,正方体6个面共有对直线,去掉重复,则有对.故选C.考点:1.直线的位置关系;2.异面直线所成的角.7、A【解题分析】分析:根据互斥事件概率加法公式以及独立事件概率乘积公式求概率.详解:因为这两个人在2018年高考中恰有一人数学考140分以上的概率为甲考140分以上乙未考到140分以上事件概率与乙考140分以上甲未考到140分以上事件概率的和,而甲考140分以上乙未考到140分以上事件概率为,乙考140分以上甲未考到140分以上事件概率为,因此,所求概率为,选A.点睛:本题考查互斥事件概率加法公式以及独立事件概率乘积公式,考查基本求解能力.8、B【解题分析】

分析:由已知条件推导出a≤x+2lnx+3x,x>0,令y=x+2lnx+3【题目详解】详解:由题意2xlnx≥-x2所以a≤x+2lnx+3x设y=x+2lnx+3由y'=0,得当x∈(0,1)时,y'<0,当x∈(1,+∞)时,所以x=1时,ymin=1+0+3=4,所以即实数a的取值范围是(-∞,4].点睛:利用导数研究不等式恒成立或解不等式问题,通常首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.9、D【解题分析】

根据中位数和平均数的公式分别进行计算即可.【题目详解】组数据的中位数为17,,乙组数据的平均数为,,得,则,故选D.【题目点拨】本题主要考查茎叶图的应用,根据中位数和平均数的公式是解决本题的关键.中位数即最中间的数据,平均数即将所有数据加到一起,除以数据个数.10、A【解题分析】

分子分母同时乘以,化简整理,得出,再判断象限.【题目详解】,在复平面内对应的点为(),所以位于第一象限.故选A.【题目点拨】本题考查复数的基本运算及复数的几何意义,属于基础题.11、A【解题分析】

①假定甲说的是真话,则丙说“甲说的对”也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故甲说的是假话;②假定乙说的是真话,则丁说“反正我没有责任”也为真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故乙说的是假话;③假定丙说的是真话,由①知甲说的也是真话,这与四人中只有一个人说的是真话矛盾,所以假设不成立,故丙说的是假话;综上可得,丁说的真话,甲乙丙三人说的均为假话,即乙丙丁没有责任,所以甲负主要责任,故选A.12、D【解题分析】

由题意结合所给的统计图确定选项中的说法是否正确即可.【题目详解】对于选项A:2018年1~4月的业务量,3月最高,2月最低,差值为,接近2000万件,所以A是正确的;对于选项B:2018年1~4月的业务量同比增长率分别为,均超过,在3月最高,所以B是正确的;对于选项C:2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C是正确的;对于选项D,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D错误.本题选择D选项.【题目点拨】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

将进行质因数分解为,然后利用约数和定理可得出的不同正约数个数.【题目详解】将进行质因数分解为,因此,的不同正约数共有.故答案为:.【题目点拨】本题考查合数的正约数个数的计算,一般将合数质因数分解,并利用约数和定理进行计算,也可以采用列举法,考查计算能力,属于中等题.14、【解题分析】分析:①所求概率为,计算即得结论;

②利用取到红球次数可知其方差为;通过每次取到红球的概率可知所求概率为.详解:①从中任取3球,恰有一个白球的概率是,故正确;

②从中有放回的取球6次,每次任取一球,

取到红球次数,其方差为,故正确;

③从中有放回的取球3次,每次任取一球,每次取到红球的概率,

∴至少有一次取到红球的概率为,故正确.

故答案为:①②③.点睛:本题主要考查命题的真假判断,涉及概率的计算,考查学生的计算能力.15、【解题分析】

由已知得=1,解得c=,由此能求出P(0.5<ξ<2.5)=P(ξ=1)+P(ξ=2)==.【题目详解】随机变量ξ的分布列为P(ξ=k)=,k=1,2,3,∴=1,即,解得c=,∴P(0.5<ξ<2.5)=P(ξ=1)+P(ξ=2)===.故答案为.【题目点拨】本题考查概率的求法,是中档题,解题时要认真审题,注意分布列的合理运用.16、2【解题分析】

根据题中数据,求出平均值,再由方差计算公式,即可求出结果.【题目详解】因为,0,1,2,1这五个数的平均数为:,所以其方差为:.故答案为:.【题目点拨】本题主要考查计算几个数的方差,熟记公式即可,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解题分析】

(1)根据离心率和焦点坐标求出,从而得到椭圆方程;(2)将直线方程与椭圆方程联立,利用韦达定理表示出点横坐标,代入直线得到坐标;再将代入曲线方程,从而求得.【题目详解】(1)由题意得:,解得:,所以椭圆的方程为:(2)设点,,线段的中点为由,消去得由,解得:所以,因为点在曲线上所以解得:或【题目点拨】本题考查直线与椭圆的综合应用问题,关键是能够通过联立,将中点坐标利用韦达定理表示出来,从而利用点在曲线上构造方程,求得结果.18、(1);(2)【解题分析】分析:(1)利用零点分类讨论法解不等式.(2)先利用分段函数求得,再解不等式得到实数的取值范围.详解:(1)当时,由得,故有或或∴或或,∴或,∴的解集为或.(2)当时∴由得∴∴的取值范围为.点睛:(1)本题主要考查绝对值不等式的解法,考查分段函数的最值的求法,考查不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分类讨论的思想方法.(2)解题的关键是求的最小值,这里要利用分段函数的图像求解.19、(1)或.(2)【解题分析】

(1)利用绝对值不等式可得=2,即可得出的值.(2)不等式在上恒成立等价于在上恒成立,故的解集是的子集,据此可求的取值范围.【题目详解】解:(1)因为,所以.令,得或,解得或.(2)当时,.由,得,即,即.据题意,,则,解得.所以实数的取值范围是.【题目点拨】(1)绝对值不等式指:及,我们常利用它们求含绝对值符号的函数的最值.(2)解绝对值不等式的基本方法有公式法、零点分段讨论法、图像法、平方法等,利用公式法时注意不等号的方向,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图像法求解时注意图像的正确刻画.20、(Ⅰ)见解析;(Ⅱ)见解析【解题分析】

(1)设AC与BD交于点G.因为EF∥AG,且EF=1,AG=AC=1,所以四边形AGEF为平行四边形.所以AF∥EG.因为EG⊂平面BDE,AF⊄平面BDE,所以AF∥平面BDE.(2)连接FG.因为EF∥CG,EF=CG=1,且CE=1,所以四边形CEFG为菱形.所以CF⊥EG.因为四边形ABCD为正方形,所以BD⊥AC.又因为平面ACEF⊥平面ABCD,且平面ACEF∩平面ABCD=AC,所以BD⊥平面ACEF.所以CF⊥BD.又BD∩EG=G,所以CF⊥平面BDE.21、(1)函数的单调递减区间是,单调递增区间是(2)的最小值为1【解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论