2024届湖南省长沙市麓山国际实验学校数学高二下期末经典试题含解析_第1页
2024届湖南省长沙市麓山国际实验学校数学高二下期末经典试题含解析_第2页
2024届湖南省长沙市麓山国际实验学校数学高二下期末经典试题含解析_第3页
2024届湖南省长沙市麓山国际实验学校数学高二下期末经典试题含解析_第4页
2024届湖南省长沙市麓山国际实验学校数学高二下期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省长沙市麓山国际实验学校数学高二下期末经典试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则()A.18 B.24 C.36 D.562.某体育彩票规定:从01到36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后再从01到17个号中选出3个连续的号,从19到29个号中选出2个连续的号,从30到36个号中选出1个号组成一注.若这个人要把这种要求的号全买,至少要花的钱数为()A.2000元 B.3200元 C.1800元 D.2100元3.已知向量,,则()A. B. C. D.4.已知复数,则复数的模为()A.2 B. C.1 D.05.已知定义在上的函数的导函数为,满足,且,则不等式的解集为()A. B. C. D.6.已知直线l过点P(1,0,-1),平行于向量,平面过直线l与点M(1,2,3),则平面的法向量不可能是()A.(1,-4,2) B. C. D.(0,-1,1)7.已知有穷数列2,3,,满足2,3,,,且当2,3,,时,若,则符合条件的数列的个数是

A. B. C. D.8.一个几何体的三视图如右图所示,则这个几何体的体积为()A. B. C. D.89.设函数满足:,,则时,()A.有极大值,无极小值 B.有极小值,无极大值C.既有极大值,又有极小值 D.既无极大值,又无极小值10.学号分别为1,2,3,4的4位同学排成一排,若学号相邻的同学不相邻,则不同的排法种数为()A.2 B.4 C.6 D.811.曲线和直线所围成图形的面积是()A.4 B.6 C.8 D.1012.设是定义在上的偶函数,且当时,,若对任意的,不等式恒成立,则实数的最大值是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知某商场在一周内某商品日销售量的茎叶图如图所示,那么这一周该商品日销售量的平均数为________.14.f(x)=2sinωx(0<ω<1),在区间上的最大值是,则ω=________.15.在四面体中,,已知,,且,则四面体的体积的最大值为_______.16.在10件产品中有8件一等品,2件二等品,若从中随机抽取2件产品,则恰好含1件二等品的概率为___三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,内角所对的边分别为.已知,,.(Ⅰ)求和的值;(Ⅱ)求的值.18.(12分)在平面直角坐标系中,直线的参数方程为(为参数).在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为.(1)求直线的普通方程和圆的直角坐标方程;(2)设圆与直线交于,两点,若点的坐标为,求.19.(12分)已知函数,为自然对数的底数.(1)求曲线在处的切线方程;(2)求函数的单调区间与极值.20.(12分)的展开式中若有常数项,求最小值及常数项.21.(12分)在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的参数方程为(为参数).(1)求曲线的直角坐标方程;曲线的极坐标方程。(2)当曲线与曲线有两个公共点时,求实数的取值范围.22.(10分)在直角坐标系中,曲线的参数方程为(为参数),在以坐标为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程,并指出曲线是什么曲线;(2)若直线与曲线相交于两点,,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】,故,.2、D【解题分析】第步从到中选个连续号有种选法;第步从到中选个连续号有种选法;第步从到中选个号有种选法.由分步计数原理可知:满足要求的注数共有注,故至少要花,故选D.3、A【解题分析】

先求出的坐标,再根据向量平行的坐标表示,列出方程,求出.【题目详解】由得,解得,故选A.【题目点拨】本题主要考查向量的加减法运算以及向量平行的坐标表示.4、C【解题分析】

根据复数的除法运算求出,然后再求出即可.【题目详解】由题意得,∴.故选C.【题目点拨】本题考查复数的除法运算和复数模的求法,解题的关键是正确求出复数,属于基础题.5、A【解题分析】分析:先构造函数,再根据函数单调性解不等式.详解:令,因为,所以因此解集为,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等6、D【解题分析】试题分析:由题意可知,所研究平面的法向量垂直于向量,和向量,而=(1,2,3)-(1,0,-1)=(0,2,4),选项A,(2,1,1)(1,-4,2)=0,(0,2,4)(1,-4,2)=0满足垂直,故正确;选项B,(2,1,1)(,-1,)=0,(0,2,4)(,-1,)=0满足垂直,故正确;选项C,(2,1,1)(-,1,−)=0,(0,2,4)(-,1,−)=0满足垂直,故正确;选项D,(2,1,1)(0,-1,1)=0,但(0,2,4)(0,-1,1)≠0,故错误.考点:平面的法向量7、A【解题分析】

先选出三个数确定为,其余三个数从剩下的7个里面选出来,排列顺序没有特殊要求.【题目详解】先确定,相当于从10个数值中选取3个,共有种选法,再从剩余的7个数值中选出3个作为,共有种选法,所以符合条件的数列的个数是,故选A.【题目点拨】本题主要考查利用排列组合的知识确定数列的个数,有无顺序要求,是选择排列还是组合的依据.8、C【解题分析】分析:由三视图可知,该几何体表示一个棱长为的正方体切去一个以直角边长为的等腰直角三角形为底面,高为的三棱锥,即可利用体积公式,求解几何体的体积.详解:由给定的三视图可知,该几何体表示一个棱长为的正方体切去一个以直角边长为的等腰直角三角形为底面,高为的三棱锥,所以该几何体的体积为,故选C.点睛:本题考查了几何体的三视图及几何体的体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.9、B【解题分析】

首先构造函数,由已知得,从而有,令,求得,这样可确定是增函数,由可得的正负,确定的单调性与极值.【题目详解】,令,则,所以,令,则,即,当时,,单调递增,而,所以当时,,,单调递减;当时,,,单调递增;故有极小值,无极大值,故选B.【题目点拨】本题考查用导数研究函数的极值,解题关键是构造新函数,,求导后表示出,然后再一次令,确定单调性,确定正负,得出结论.10、A【解题分析】

先排1,2,再将3、4插空,用列举法,即可得出结果.【题目详解】先排好1、2,数字3、4插空,排除相邻学号,只有2种排法:3142、1.故选A【题目点拨】本题主要考查计数原理,熟记概念即可,属于基础题型.11、C【解题分析】分析:先根据题意画出区域,然后依据图形得到积分下限为0,积分上限为2,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.详解:曲线和直线的交点坐标为(0,0),(2,2),(-2,-2),根据题意画出图形,曲线和直线所围成图形的面积是.故选C.点睛:该题所考查的是求曲线围成图形的面积问题,在解题的过程中,首先正确的将对应的图形表示出来,之后应用定积分求得结果,正确求解积分区间是解题的关键.12、B【解题分析】

由题意,函数在上单调递减,又由函数是定义上的偶函数,得到函数在单调递增,把不等式转化为,即可求解.【题目详解】易知函数在上单调递减,又函数是定义在上的偶函数,所以函数在上单调递增,则由,得,即,即在上恒成立,则,解得,即的最大值为.【题目点拨】本题主要考查了函数的基本性质的应用,其中解答中利用函数的基本性质,把不等式转化为求解是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

直接计算平均数得到答案.【题目详解】.故答案为:.【题目点拨】本题考查了茎叶图的平均值,意在考查学生的计算能力.14、【解题分析】

函数f(x)的周期T=,因此f(x)=2sinωx在上是增函数,∵0<ω<1,∴是的子集,∴f(x)在上是增函数,∴=,即2sin=,∴ω=,∴ω=,故答案为.15、【解题分析】

作与,连接,说明与都在以为焦点的椭球上,且都垂直与焦距,,取BC的中点F,推出当是等腰直角三角形时几何体的体积最大,求解即可.【题目详解】解:作与,连接,则平面,,由题意,与都在以为焦点的椭球上,且都垂直与焦距且垂足为同一点E,显然与全等,所以,取BC的中点F,,要四面体ABCD的体积最大,因为AD是定值,只需三角形EBC面积最大,因为BC是定值,所以只需EF最大即可,当是等腰直角三角形时几何体的体积最大,,,,所以几何体的体积为:,故答案为:.【题目点拨】本题考查棱锥的体积,考查空间想象能力以及计算能力,是中档题.16、【解题分析】

先求从10件产品中随机抽取2件产品事件数,再求恰好含1件二等品的事件数,最后根据古典概型概率公式求结果.【题目详解】从10件产品中随机抽取2件产品有种方法;其中恰好含1件二等品有种方法;因此所求概率为故答案为:【题目点拨】本题考查古典概型概率,考查基本分析求解能力,属基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ).=.(Ⅱ).【解题分析】试题分析:利用正弦定理“角转边”得出边的关系,再根据余弦定理求出,进而得到,由转化为,求出,进而求出,从而求出的三角函数值,利用两角差的正弦公式求出结果.试题解析:(Ⅰ)解:在中,因为,故由,可得.由已知及余弦定理,有,所以.由正弦定理,得.所以,的值为,的值为.(Ⅱ)解:由(Ⅰ)及,得,所以,.故.考点:正弦定理、余弦定理、解三角形【名师点睛】利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值.利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.18、(1)直线l的普通方程为;圆C的直角坐标方程为;(2).【解题分析】

(1)由直线的参数方程消去参数可直接得到普通方程;由极坐标与直角坐标的互化公式,可直接得到圆的直角坐标方程;(2)将直线参数方程代入圆的直角坐标方程,结合韦达定理,根据参数的方法,即可求出结果.【题目详解】(1)由直线的参数方程(为参数)得直线的普通方程为由,得,即圆的直角坐标方程为.(2)将直线的参数方程代入圆的直角坐标方程,得,即,由于>0,故可设,是上述方程的两个实根,所以又直线过点P(3,),故.【题目点拨】本题主要考查参数方程与普通方程的互化,以及极坐标方程与直角坐标方程的互化,熟记公式即可,属于常考题型.19、(1);(2)的单调递减区间为,单调递增区间为;极小值为,无极大值.【解题分析】

首先求得;(1)将代入求得且点坐标,根据导数的几何意义可求得切线斜率,利用点斜式可得切线方程;(2)令导函数等于零,求得,从而可得导函数在不同区间内的符号,进而得到单调区间;根据极值的定义可求得极值.【题目详解】由得:(1)在处切线斜率:,又所求切线方程为:,即:(2)令,解得:当时,;当时,的单调递减区间为:;单调递增区间为:的极小值为:;无极大值【题目点拨】本题考查利用导数求解曲线在某一点处的切线方程、求解导数的单调区间和极值的问题,考查学生对于导数基础应用的掌握.20、的最小值为;常数项为.【解题分析】

求出二项式展开式的通项,由可求出的最小值,并求出对应的值,代入通项即可得出所求的常数项.【题目详解】二项式展开式的通项为,令,得,所以,的最小值为,此时.此时,展开式中的常数项为.【题目点拨】本题考查利用二项式定理求常数项,一般利用的指数为零求出参数的值,考查运算求解能力,属于中等题.21、(1)见解析;(2).【解题分析】

(1)利用极坐标与平面直角坐标之间的转换关系,得到曲线的直角坐标方程与曲线的极坐标方程,注意题中所给的角的范围,从而得到其为上半圆,注意范围;(2)利用直线与圆的位置关系由圆心到直线的距离来约束,此时注意是上半圆,从而求得结果.【题目详解】(1)由得,即:,∴曲线为以(1,0)为圆心,1为半径的圆的上半部分,从而直角坐标方程为:.-曲线的极坐标方程为(2)直线的普通方程为:,当直线与半圆相切时,解得(舍去)或,当直线过点(2,0)时,,故实数的取值范围为.【题目点拨】该题考查的是有关坐标系与参数方程的问题,在解题的过程中,涉及到的知识点有平面直角坐标与极坐标的转换关系,曲线的极坐标方程与平面直角坐标方程的转换,直线与曲线有两个公共点的条件,思路清晰是正确解题的关键.22、(1)曲线的轨迹是以为圆心,3为半径的圆.(2)【解题分析】

(1)由曲

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论