




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东师范大学附中数学高二下期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若展开式的常数项为60,则值为()A. B. C. D.2.设函数是的导函数,,,,,则()A. B.C. D.3.某体育彩票规定:从01到36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后再从01到17个号中选出3个连续的号,从19到29个号中选出2个连续的号,从30到36个号中选出1个号组成一注.若这个人要把这种要求的号全买,至少要花的钱数为()A.2000元 B.3200元 C.1800元 D.2100元4.已知与之间的一组数据,则与的线性回归方程必过点()A. B. C. D.5.已知函数的图象在点M(1,f(1))处的切线方程是+2,则的值等于()A.0 B.1 C. D.36.已知函数,,若,,则的大小为()A. B. C. D.7.已知函数,若与的图象上分别存在点、,使得、关于直线对称,则实数的取值范围是()A. B. C. D.8.若,则下列结论正确的是()A. B. C. D.9.在复平面内,复数的对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.()A.9 B.12 C.15 D.311.已知,,,则的大小关系为()A. B.C. D.12.如表是某厂节能降耗技术改造后,在生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:34562.53m4.5若根据如表提供的数据,用最小二乘法可求得对的回归直线方程是,则表中的值为()A.4 B.4.5 C.3 D.3.5二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,集合,则_______.14.已知直线,,若与平行,则实数的值为______.15.展开式中的常数项为__________.16.如图,两条距离为4的直线都与轴平行,它们与抛物线和圆分别交于,和,,且抛物线的准线与圆相切,则的最大值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的焦距为,点在椭圆上.(1)求椭圆方程;(2)设直线:与椭圆交于,两点,且直线,,的斜率之和为0.①求证:直线经过定点,并求出定点坐标;②求面积的最大值.18.(12分)若数列的前项和为,且,.(1)求,,;(2)猜想数列的通项公式,并用数学归纳法加以证明.19.(12分)在直角坐标系中,以原点为极点,以轴正半轴为极轴,圆的极坐标方程为.(1)将圆的极坐标方程化为直角坐标方程;(2)过点作斜率为1直线与圆交于两点,试求的值.20.(12分)某运动员射击一次所得环数的分布列如下:89111.41.41.2现进行两次射击,且两次射击互不影响,以该运动员两次射击中最高环数作为他的成绩,记为.(1)求该运动员两次命中的环数相同的概率;(2)求的分布列和数学期望.21.(12分)已知数列的前项和为,且.(1)求数列的通项公式;(2)若数列的前项和为,证明:.22.(10分)如图,在正三棱锥中,侧棱长和底边长均为,点为底面中心.(1)求正三棱锥的体积;(2)求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
由二项式展开式的通项公式写出第项,求出常数项的系数,列方程即可求解.【题目详解】因为展开式的通项为,令,则,所以常数项为,即,所以.故选D【题目点拨】本题主要考查二项式定理的应用,熟记二项展开式的通项即可求解,属于基础题型.2、B【解题分析】分析:易得到fn(x)表达式以8为周期,呈周期性变化,由于2018÷8余2,故f2008(x)=f2(x),进而得到答案详解:∵f0(x)=ex(cosx+sinx),∴f0′(x)=ex(cosx+sinx)+ex(﹣sinx+cosx)=2excosx,∴f1(x)==excosx,∴f1′(x)=ex(cosx﹣sinx),∴f2(x)==ex(cosx﹣sinx),∴f2′(x)=ex(cosx﹣sinx)+ex(﹣sinx﹣cosx)=﹣2exsinx,∴f3(x)=﹣exsinx,∴f3′(x)=﹣ex(sinx+cosx),∴f4(x)=﹣ex(cosx+sinx),∴f4′(x)=﹣2excosx,∴f5(x)=﹣excosx,∴f6(x)=﹣ex(cosx﹣sinx),∴f7(x)=exsinx,∴f8(x)=ex(cosx+sinx),…,∴=f2(x)=,故选:B.点睛:本题通过观察几个函数解析式,归纳出一般规律来考查归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.3、D【解题分析】第步从到中选个连续号有种选法;第步从到中选个连续号有种选法;第步从到中选个号有种选法.由分步计数原理可知:满足要求的注数共有注,故至少要花,故选D.4、C【解题分析】
计算出和,即可得出回归直线必过的点的坐标.【题目详解】由题意可得,,因此,回归直线必过点,故选:C.【题目点拨】本题考查回归直线必过的点的坐标,解题时要熟悉“回归直线过样本中心点”这一结论的应用,考查结论的应用,属于基础题.5、D【解题分析】
根据导数定义,求得的值;根据点在切线方程上,求得的值,进而求得的值。【题目详解】点M(1,f(1))在切线上,所以根据导数几何意义,所以所以所以选D【题目点拨】本题考查了导数的几何意义及点在曲线上的意义,属于基础题。6、C【解题分析】
对函数求导,确定函数的单调性,然后确定这三个数之间的大小关系,最后利用函数的单调性判断出的大小关系.【题目详解】,所以是上的增函数.,所以,故本题选C.【题目点拨】本题考查了利用导数判断出函数的单调性,然后判断函数值大小关系.解决本题的重点是对指数式、对数式的比较,关键是对指数函数、对数函数的单调性的理解.7、A【解题分析】
先求得关于对称函数,由与图像有公共点来求得实数的取值范围.【题目详解】设函数上一点为,关于对称点为,将其代入解析式得,即.在同一坐标系下画出和的图像如下图所示,由图可知,其中是的切线.由得,而,只有A选项符合,故选A.【题目点拨】本小题主要考查函数关于直线对称函数解析式的求法,考查两个函数有交点问题的求解策略,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.8、C【解题分析】
先用作为分段点,找到小于和大于的数.然后利用次方的方法比较大小.【题目详解】易得,而,故,所以本小题选C.【题目点拨】本小题主要考查指数式和对数式比较大小,考查指数函数和对数函数的性质,属于基础题.9、D【解题分析】
化简复数,再判断对应象限.【题目详解】,对应点位于第四象限.故答案选D【题目点拨】本题考查了复数的计算,属于简单题.10、A【解题分析】分析:直接利用排列组合的公式计算.详解:由题得.故答案为A.点睛:(1)本题主要考查排列组合的计算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)排列数公式:==(,∈,且).组合数公式:===(∈,,且)11、A【解题分析】
利用等中间值区分各个数值的大小.【题目详解】,,,故,所以.故选A.【题目点拨】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.12、A【解题分析】由题意可得,故样本中心为。因为回归直线过样本中心,所以,解得。选A。二、填空题:本题共4小题,每小题5分,共20分。13、{3,4}.【解题分析】
利用交集的概念及运算可得结果.【题目详解】,.【题目点拨】本题考查集合的运算,考查交集的概念与运算,属于基础题.14、【解题分析】
根据两直线平行,列出有关的等式和不等式,即可求出实数的值.【题目详解】由于与平行,则,即,解得.故答案为:.【题目点拨】本题考查利用两直线平行求参数,解题时要熟悉两直线平行的等价条件,并根据条件列式求解,考查运算求解能力,属于基础题.15、24【解题分析】分析:由题意,求得二项式的展开式的通项为,即可求解答案.详解:由题意,二项式的展开式的通项为,令,则.点睛:本题主要考查了二项式定理的应用,其中熟记二项展开式的通项公式是解答的关键,着重考查了推理与运算能力.16、【解题分析】
先设直线的方程为,再利用直线与圆锥曲线的位置关系将用表示,再利用导数求函数的最值即可得解.【题目详解】解:由抛物线的准线与圆相切得或7,又,∴.设直线的方程为,则直线的方程为,则.设,,令,得;令,得.即函数在为增函数,在为减函数,故,从而的最大值为,故答案为:.【题目点拨】本题考查了利用导数求函数的最值,重点考查了运算能力,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)①证明见解析;②1【解题分析】
(1)由条件有,将点代入椭圆方程结合,可求解椭圆方程.
(2)①设点,,设直线,,的斜率分别为,由条件有,将直线方程与椭圆方程联立,将,代入化简可得,得到直线过定点.
②由①利用弦长公式可求出,再求出原点到直线的距离,则的面积可表示出来,从而可求其最大值.【题目详解】解:(1)由题意可得,又由点在椭圆上,故得,∵,解得,.∴椭圆的方程为;(2)设点,.联立得,∴,化简得①,②,③设直线,,的斜率分别为直线,,的斜率之和为0,∴,即,∴,又,∴.综上可得,直线经过定点.②由①知.∴,原点到直线的距离.∴,∵,当且仅当,即取“”.∴,即面积的最大值为1.【题目点拨】本题考查求椭圆方程和证明直线过定点、求三角形的面积的最值,考查方程联立,利用韦达定理的舍而不求的方法的应用,考查计算化简能力,属于难题.18、(1);(2),证明见解析【解题分析】
(1)由已知条件分别取,能依次求出,,的值;(2)猜想.证明当是否成立,假设时,猜想成立,即:,证明当也成立,可得证明【题目详解】解:(1)由题意:,,当时,可得,可得同理当时:,可得当时:,可得(2)猜想.证明如下:①时,符合猜想,所以时,猜想成立.②假设时,猜想成立,即:.(),,两式作差有:,又,所以对恒成立.则时,,所以时,猜想成立.综合①②可知,对恒成立.【题目点拨】本题主要考查数列的递推式及通项公式的应用,数学归纳法的证明方法的应用,考查学生的计算能力与逻辑推理能力,属于中档题.19、(1);(2)【解题分析】
(Ⅰ)根据直线参数方程的一般式,即可写出,化简圆的极坐标方程,运用ρcosθ=x,ρsinθ=y,即可普通方程;
(Ⅱ)求出过点P(2,0)作斜率为1直线l的参数方程,代入到圆的方程中,得到关于t的方程,运用韦达定理,以及参数t的几何意义,即可求出结果.【题目详解】(Ⅰ)由得:,,即,C的直角坐标方程为:.(Ⅱ)设A,B两点对应的参数分别为,,直线和圆的方程联立得:,所以,,.所以,.【题目点拨】本题考查直线的参数方程、以及极坐标方程与普通方程的互化,同时考查直线参数方程的运用,属于中档题.20、(1)1.36;(2)见解析,9.2【解题分析】
(1)先计算两次命中8环,9环,11环的概率,然后可得结果.(2)列出的所有可能结果,并分别计算所对应的概率,然后列出分布列,并依据数学期望的公式,可得结果.【题目详解】(1)两次都命中8环的概率为两次都命中9环的概率为两次都命中11环的概率为设该运动员两次命中的环数相同的概率为(2)的可能取值为8,9,11,,,的分布列为89111.161.481.36【题目点拨】本题考查离散型随机变量的分布列以及数学期望,重在于对随机变量的取值以及数学期望的公式的掌握,属基础题.21、(1);(2)见解析【解题分析】
(1)根据前n项和与通项间的关系得到,,,两式做差即可得到数列,数列为常数列,,即;(2)根据第一问得到,裂项求和即可.【题目详解】(1)当时,,即,当时,①,②,得,即,所以,且,所以数列为常数列,,即.(2)由(1)得,所以,所以,.【题目点拨】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 抚州职业技术学院《空间模型制作》2023-2024学年第一学期期末试卷
- 多模态数据融合-第9篇-洞察及研究
- 感知偏见修正方法-洞察及研究
- 生物打印血管化构建-洞察及研究
- 铣床培训资料
- 勘探仪器研发-洞察及研究
- 湖南工商大学《路桥试验检测技术》2023-2024学年第一学期期末试卷
- 广西交通职业技术学院《体育-台球(四)》2023-2024学年第一学期期末试卷
- 青岛港湾职业技术学院《算法与数据结构》2023-2024学年第一学期期末试卷
- 东华大学《数学拓展课程》2023-2024学年第一学期期末试卷
- 2023年泸州市文化和旅游系统事业单位招聘笔试模拟试题及答案
- 医疗器械行业市场部人员岗位职责
- (中医内科)高级、副高级职称考试模拟试题及答案
- 跌倒坠床原因分析预防措施
- 部编版小学道德与法治三年级下册期末质量检测试卷【含答案】5套
- 弱电施工安全技术交底
- DB21T 3354-2020 辽宁省绿色建筑设计标准
- 安全生产知识应知应会
- 08S305-小型潜水泵选用及安装图集
- 体育器材采购设备清单
- 二手车鉴定评估报告书最终
评论
0/150
提交评论