版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届抚顺市重点中学高二数学第二学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将4名实习教师分配到高一年级三个班实习,每班至少安排一名教师,则不同的分配方案有()种A.12 B.36 C.72 D.1082.点的直角坐标化成极坐标为()A. B. C. D.3.下列命题中:①“x>y”是“x②已知随机变量X服从正态分布N3, ③线性回归直线方程y=bx+④命题“∃x∈R,x2+x+1>0其中正确的个数是()A.1 B.2 C.3 D.44.已知双曲线my2-x2=1(m∈R)与椭圆+x2=1有相同的焦点,则该双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±3x5.有,,,四种不同颜色的花要(全部)栽种在并列成一排的五个区域中,相邻的两个区域栽种花的颜色不同,且第一个区域栽种的是颜色的花,则不同栽种方法种数为()A.24 B.36 C.42 D.906.复数的共轭复数所对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.下列命题错误的是A.若直线平行于平面,则平面内存在直线与平行B.若直线平行于平面,则平面内存在直线与异面C.若直线平行于平面,则平面内存在直线与垂直D.若直线平行于平面,则平面内存在直线与相交8.在正方体中,点,分别是,的中点,则下列说法正确的是()A. B.与所成角为C.平面 D.与平面所成角的余弦值为9.若点M为圆上的动点,则点M到双曲线渐近线的距离的最小值为()A. B. C. D.10.已知正三棱柱的所有顶点都在球的球面上,且该正三棱柱的底面边长为,体积为,则球的表面积为()A. B. C. D.11.直线与抛物线交于,两点,若,则弦的中点到直线的距离等于()A. B. C.4 D.212.已知复平面内的圆:,若为纯虚数,则与复数对应的点()A.必在圆外 B.必在上 C.必在圆内 D.不能确定二、填空题:本题共4小题,每小题5分,共20分。13.设等差数列的前项和为.若,则______.14.若的展开式中含项的系数为,则__________.15.若对甲、乙、丙3组不同的数据作线性相关性检验,得到这3组数据的线性相关系数依次为0.83,0.72,-0.90,则线性相关程度最强的一组是_______.(填甲、乙、丙中的一个)16.不同的五种商品在货架上排成一排,其中甲、乙两种必须排在一起,丙、丁两种不能排在一起,则不同的排法种数共有;(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(Ⅰ)求的单调区间;(Ⅱ)求在区间上的最值.18.(12分)已知函数,且当时,函数取得极值为.(1)求的解析式;(2)若关于的方程在上有两个不同的实数解,求实数的取值范围.19.(12分)如图,底面,四边形是正方形,.(Ⅰ)证明:平面平面;(Ⅱ)求直线与平面所成角的余弦值.20.(12分)甲、乙两企业生产同一种型号零件,按规定该型号零件的质量指标值落在内为优质品.从两个企业生产的零件中各随机抽出了件,测量这些零件的质量指标值,得结果如下表:甲企业:分组频数5乙企业:分组频数55(1)已知甲企业的件零件质量指标值的样本方差,该企业生产的零件质量指标值X服从正态分布,其中μ近似为质量指标值的样本平均数(注:求时,同一组中的数据用该组区间的中点值作代表),近似为样本方差,试根据企业的抽样数据,估计所生产的零件中,质量指标值不低于的产品的概率.(精确到)(2)由以上统计数据完成下面列联表,并判断能否在犯错误的概率不超过的前提下认为两个企业生产的零件的质量有差异.甲厂乙厂总计优质品非优质品总计附:参考数据:,参考公式:若,则,,;21.(12分)已知函数.(1)若在处的切线过点,求的值;(2)若在上存在零点,求a的取值范围.22.(10分)已知函数.(1)若在上的最大值是最小值的2倍,解不等式;(2)若存在实数使得成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】试题分析:第一步从名实习教师中选出名组成一个复合元素,共有种,第二步把个元素(包含一个复合元素)安排到三个班实习有,根据分步计数原理不同的分配方案有种,故选B.考点:计数原理的应用.2、D【解题分析】
分别求得极径和极角,即可将直角坐标化为极坐标.【题目详解】由点M的直角坐标可得:,点M位于第二象限,且,故,则将点的直角坐标化成极坐标为.本题选择D选项.【题目点拨】本题主要考查直角坐标化为极坐标的方法,意在考查学生的转化能力和计算求解能力.3、B【解题分析】
①充要条件即等价条件,不等价则不充要;②根据正态分布的特征,且μ=3,得到P(X≤0)=P(X≥6)=1-P(X≤6),判断其正确;③根据回归直线的特征,得出其正确;④写出命题p的否定¬p,判定其错误;最后得出结果.【题目详解】对于①,由x>y≥0,可以推出x2>y2,充分性成立,x2对于②,根据题意得P(X≤0)=P(X≥6)=1-P(X≤6)=1-0.72=0.28,所以②正确;对于③,根据回归直线一定会过样本中心点,所以③正确;对于④,命题“∃x∈R,x2所以正确命题有两个,故选B.【题目点拨】该题考查的是有关判断命题的正误的问题,涉及到的知识点有充要条件,正态分布,含有一个量词的命题的否定,回归直线方程的特征,属于简单题目.4、A【解题分析】试题分析:由于的焦点为.双曲线可化为.由题意可得.依题意得.所以双曲线方程为.所以渐近线方程为.故选A.考点:1.椭圆的性质.2.双曲线的性质.3.双曲线的标准方程.5、B【解题分析】分析:可以直接利用树状图分析解答.详解:这一种有12种,类似AC,各有12种,共36种,故答案为:B.点睛:(1)本题主要考查排列组合,考查计数原理,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)本题可以利用排列组合解答,分类讨论比较复杂.也可以利用树状图解答,比较直观.6、C【解题分析】
通过化简,于是可得共轭复数,判断在第几象限即得答案.【题目详解】根据题意得,所以共轭复数为,对应的点为,故在第三象限,答案为C.【题目点拨】本题主要考查复数的四则运算,共轭复数的概念,难度不大.7、D【解题分析】分析:利用空间中线线、线面间的位置关系求解.详解:A.若直线平行于平面,则平面内存在直线与平行,正确;B.若直线平行于平面,则平面内存在直线与异面,正确;C.若直线平行于平面,则平面内存在直线与垂直,正确,可能异面垂直;D.若直线平行于平面,则平面内存在直线与相交,错误,平行于平面,与平面没有公共点.故选D.点睛:本题主要考查命题的真假判断,涉及线面平行的判定和性质,属于基础题.8、C【解题分析】
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出结果.【题目详解】解:设正方体ABCD﹣A1B1C1D1中棱长为2,以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,A1(2,0,2),E(2,1,0),B(2,2,0),F(0,2,1),(0,1,﹣2),(﹣2,0,1),2≠0,∴A1E与BF不垂直,故A错误;(﹣2,2,﹣1),(﹣2,﹣2,0),cos,0,∴A1F与BD所成角为90°,故B错误;(2,0,0),(0,2,1),(0,1,﹣2),•0,0,∴A1E⊥DA,A1E⊥DF,∴A1E⊥平面ADF,故C正确;(﹣2,2,﹣1),平面ABCD的法向量(0,0,1),设A1F与平面ABCD所成角为θ,则sinθ,∴cosθ.∴A1F与平面ABCD所成角的余弦值为,故D错误.故选:C.【题目点拨】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.9、B【解题分析】
首先判断圆与渐近线的位置关系为相离,然后利用圆上一点到直线距离的最小值等于圆心到直线的距离减去圆的半径,由此即可得到答案。【题目详解】由题知,圆的圆心,半径.由双曲线的渐近线方程为,则圆心C到双曲线渐近线的距离为,故圆C与双曲线渐近线相离,圆C上动点M到双曲线渐近线的最小距离为,故选B.【题目点拨】本题考查点到直线的距离公式的运用,考查学生基本的计算能力,属于基础题,10、C【解题分析】
正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的表面积.【题目详解】由题意可知,正三棱柱的底面中心的连线的中点就是外接球的球心,底面中心到顶点的距离为,设正三棱柱的高为,由,得,∴外接球的半径为,∴外接球的表面积为:.故选C.【题目点拨】本题主要考查了正三棱柱的外接球的表面积的求法,找出球的球心是解题的关键,考查空间想象能力与计算能力,是中档题.11、B【解题分析】直线4kx﹣4y﹣k=0可化为k(4x﹣1)﹣4y=0,故可知直线恒过定点(,0)∵抛物线y2=x的焦点坐标为(,0),准线方程为x=﹣,∴直线AB为过焦点的直线∴AB的中点到准线的距离∴弦AB的中点到直线x+=0的距离等于2+=.故选B.点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义.一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用.尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化.12、A【解题分析】
设复数,再利用为纯虚数求出对应的点的轨迹方程,再与圆:比较即可.【题目详解】由题,复平面内圆:对应的圆是以为圆心,1为半径的圆.若为纯虚数,则设,则因为为纯虚数,可设,.故故,因为,故.当有.当时,两式相除有,化简得.故复数对应的点的轨迹是.则所有的点都在为圆心,1为半径的圆外.故选:A【题目点拨】本题主要考查复数的轨迹问题,根据复数在复平面内的对应的点的关系求解轨迹方程即可.属于中等题型.二、填空题:本题共4小题,每小题5分,共20分。13、65【解题分析】
由可得,再由等差数列的求和公式结合等差数列的性质即可得结果.【题目详解】在等差数列中,由,可得,即,即,,故答案为65.【题目点拨】本题主要考查等差数列的通项公式、求和公式以及等差数列性质的应用,属于中档题.解答等差数列问题要注意应用等差数列的性质()与前项和的关系.14、2.【解题分析】分析:首先利用二项展开式的通项,求得该二项展开式的通项,之后令幂指数等于5,求得r的值,再回代,令其等于80,求得参数的值.详解:展开式的通项为,令,解得,所以有,解得,故答案是2.点睛:该题考查的是有关根据二项展开式的特定项,确定其参数的值的问题,需要熟练掌握二项展开式的通项,之后令幂指数等于相应的数,求得结果即可.15、丙【解题分析】
根据两个变量y与x的回归模型中,相关系数|r|的绝对值越接近于1,其相关程度越强即可求解.【题目详解】两个变量y与x的回归模型中,它们的相关系数|r|越接近于1,这个模型的两个变量线性相关程度就越强,在甲、乙、丙中,所给的数值中﹣0.90的绝对值最接近1,所以丙的线性相关程度最强.故答案为丙.【题目点拨】本题考查了利用相关系数判断两个变量相关性强弱的应用问题,是基础题.16、24【解题分析】甲、乙排在一起,用捆绑法,先排甲、乙、戊,有种排法,丙、丁不排在一起,用插空法,有种排法,所以共有种.考点:排列组合公式.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)增区间为(1,),(-),减区间为(-1,1);(Ⅱ)最小值为,最大值为【解题分析】试题分析:(Ⅰ)首先求函数的导数,然后解和的解集;(Ⅱ)根据上一问的单调区间,确定函数的端点值域极值,其中最大值就是函数的最大值,最小的就是函数的最小值.试题解析:(Ⅰ)根据题意,由于因为>0,得到x>1,x<-1,故可知在上是增函数,在上是增函数,而则,故在上是减函数(Ⅱ)当时,在区间取到最小值为.当时,在区间取到最大值为.考点:导数的基本运用18、(1).(2).【解题分析】分析:(1)先根据导数几何意义得,再与函数值联立方程组解得的解析式;(2)先化简方程得,再利用导数研究函数在上单调性,结合函数图像确定条件,解得结果.详解:(1),由题意得,,即,解得,∴.(2)由有两个不同的实数解,得在上有两个不同的实数解,设,由,由,得或,当时,,则在上递增,当时,,则在上递减,由题意得,即,解得,点睛:涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.19、(1)见解析;(2)直线与平面所成角的余弦值为.【解题分析】分析:(1)先根据线面平行判定定理得平面,平面.,再根据面面平行判定定理得结论,(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得平面的一个法向量,利用向量数量积求得向量夹角,最后根据线面角与向量夹角互余关系得结果.详解:(Ⅰ)因为,平面,平面,所以平面.同理可得,平面.又,所以平面平面.(Ⅱ)(向量法)以为坐标原点,所在的直线分别为轴,轴,轴建立如下图所示的空间直角坐标系,由已知得,点,,,.所以,.易证平面,则平面的一个法向量为.设直线与平面所成角为,则。则.即直线与平面所成角的余弦值为.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.20、(1);(2)列联表见解析,能在犯错误的概率不超过的前提下认为两个企业生产
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025技术合同涉外许可证合同
- 2025年中国头孢丙烯行业市场深度分析及发展趋势预测报告
- 2025年中国尾货服装行业市场全景评估及发展趋势研究预测报告
- 2025借款合同样式模板
- 2021-2026年中国桑菊感冒合剂市场全面调研及行业投资潜力预测报告
- 江苏瑞邦复合材料科技有限公司介绍企业发展分析报告模板
- 高频振网筛行业深度研究报告
- 2024山东移动电信服务市场前景及投资研究报告
- 2025年中国汉服行业市场全景监测及投资策略研究报告
- 2025年四氢双环戊二烯项目可行性研究报告
- 《灰尘的旅行》导读
- 高血压患者不遵医饮食行为的原因分析及对策
- 60周岁以上的老年人换领C1驾照三力测试题答案
- 社区依法执业培训课件
- ISO50001能源管理体系管理评审报告OK
- 输送机械安全培训
- 人教版六年级上册计算题专项练习1000题及答案
- 农村文化建设培训
- 教育理念和教育方法
- 九小场所安全检查表
- 第四代住宅百科知识讲座
评论
0/150
提交评论