云南省会泽一中2024届数学高二下期末经典试题含解析_第1页
云南省会泽一中2024届数学高二下期末经典试题含解析_第2页
云南省会泽一中2024届数学高二下期末经典试题含解析_第3页
云南省会泽一中2024届数学高二下期末经典试题含解析_第4页
云南省会泽一中2024届数学高二下期末经典试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省会泽一中2024届数学高二下期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题“,使得”是真命题,则实数的取值范围是()A. B. C. D.2.已知,且,.若关于的方程有三个不等的实数根,,,且,其中,为自然对数的底数,则的值为()A. B. C.1 D.3.设分别是定义在R上的奇函数和偶函数,且分别是的导数,当时,且,则不等式的解集是()A. B.C. D.4.等于()A. B.2 C.-2 D.+25.某所学校在一个学期的开支分布的饼图如图1所示,在该学期的水、电、交通开支(单位:万元)如图2所示,则该学期的电费开支占总开支的百分比为().A. B. C. D.6.随机变量的分布列如下:-101若,则的值是()A. B. C. D.7.已知函数的图象关于点对称,则在上的值域为()A. B. C. D.8.若是关于的实系数一元二次方程的一个根,则()A., B.,C., D.,9.如图,直线:与双曲线:的右支交于,两点,点是线段的中点,为坐标原点,直线交双曲线于,两点,其中点,,在双曲线的同一支上,若双曲线的实轴长为4,,则双曲线的离心率为()A. B. C. D.10.若(为虚数单位),则=()A.1 B. C.2 D.411.已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为A.13万件 B.11万件C.9万件 D.7万件12.已知,,,若,则()A.2 B. C. D.5二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙两地都位于北纬45°,它们的经度相差90°,设地球半径为,则甲、乙两地的球面距离为________.14.已知f(x)是定义在(﹣∞,+∞)上周期为2的偶函数,当x∈[0,1]时,f(x)=2x﹣1,则f(log23)=_____15.已知命题p:不等式|x-1|>m的解集是R,命题q:f(x)=在区间(0,+∞)上是减函数,若命题“p或q”为真,命题“p且q”为假,则实数m的取值范围是________.16.某市在“一带一路”国际合作高峰论坛前夕,在全市高中学生中进行“我和‘一带一路’”的学习征文,收到的稿件经分类统计,得到如图所示的扇形统计图,又已知全市高一年级共交稿份,则高三年级的交稿数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆:的左焦点,离心率为,点为椭圆上任一点,且的最小值为.(1)求椭圆的方程;(2)若直线过椭圆的左焦点,与椭圆交于两点,且的面积为,求直线的方程.18.(12分)已知二项式.(1)当时,求二项展开式中各项系数和;(2)若二项展开式中第9项,第10项,第11项的二项式系数成等差数列,且存在常数项,①求n的值;②记二项展开式中第项的系数为,求.19.(12分)已知抛物线,为其焦点,过的直线与抛物线交于、两点.(1)若,求点的坐标;(2)若线段的中垂线交轴于点,求证:为定值;(3)设,直线、分别与抛物线的准线交于点、,试判断以线段为直径的圆是否过定点?若是,求出定点的坐标;若不是,请说明理由.20.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响。对近六年的年宣传费和年销售量的数据作了初步统计,得到如下数据:年份201320142015201620172018年宣传费(万元)384858687888年销售量(吨)16.818.820.722.424.025.5经电脑拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式即。对上述数据作了初步处理,得到相关的值如下表:75.324.618.3101.4(1)根据所给数据,求关于的回归方程;(2)规定当产品的年销售量(吨)与年宣传费(万元)的比值在区间内时认为该年效益良好。现从这6年中任选2年,记其中选到效益良好年的数量为,试求随机变量的分布列和期望。(其中为自然对数的底数,)附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为21.(12分)已知圆圆心为,定点,动点在圆上,线段的垂直平分线交线段于点.求动点的轨迹的方程;若点是曲线上一点,且,求的面积.22.(10分)在中,角所对的边长分别为,且满足.(Ⅰ)求的大小;(Ⅱ)若的面积为,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

利用二次函数与二次不等式的关系,可得函数的判别式,从而得到.【题目详解】由题意知,二次函数的图象恒在轴上方,所以,解得:,故选C.【题目点拨】本题考查利用全称命题为真命题,求参数的取值范围,注意利用函数思想求解不等式.2、C【解题分析】

求出,可得,若关于的方程有三个不等的实数根,,,令,即,易知此方程最多有两根,所以,,必有两个相等,画出的图像,可得,根据图像必有,可得,,可得答案.【题目详解】解:由,可得,设,可得:,可得,由,可得,,可得,若关于的方程有三个不等的实数根,,,令,且,,则有,易知此方程最多有两根,所以,,必有两个相等,由,易得在上单调递增,此时;在,此时,其大致图像如图所示,可得,根据图像必有,又为的两根,即为的两根即又,故,,故.【题目点拨】本题主要考查微分方程,函数模型的实际应用及导数研究函数的性质等,综合性大,属于难题.3、C【解题分析】

构造函数,判断函数的单调性和奇偶性,脱离即可求得相关解集.【题目详解】根据题意,可设,则为奇函数,又当时,所以在R上为增函数,且,转化为,当时,则,当,则,则,故解集是,故选C.【题目点拨】本题主要考查利用抽象函数的相关性质解不等式,意在考查学生的分析能力和转化能力,难度中等.4、D【解题分析】∵.故选D5、B【解题分析】

结合图表,通过计算可得:该学期的电费开支占总开支的百分比为×20%=11.25%,得解.【题目详解】由图1,图2可知:该学期的电费开支占总开支的百分比为×20%=11.25%,故选B.【题目点拨】本题考查了识图能力及进行简单的合情推理,属简单题.6、D【解题分析】由题设可得,,所以由随机变量的方差公式可得,应选答案D。7、D【解题分析】由题意得,函数的图象关于点对称,则,即,解得,所以,则,令,解得或,当,则,函数单调递减,当,则,函数单调递增,所以,,所以函数的值域为,故选D.点睛:本题考查了函数的基本性质的应用,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的最值,其中解答中根据函数的图象关于点对称,列出方程组,求的得值是解得关键,着重考查了学生分析问题和解答问题的能力.8、B【解题分析】

由题意可知,关于的实系数一元二次方程的两个虚根分别为和,然后利用韦达定理可求出实数与的值.【题目详解】由题意可知,关于的实系数一元二次方程的两个虚根分别为和,由韦达定理得,解得.故选B.【题目点拨】本题考查利用实系数方程的虚根求参数,解题时充分利用实系数方程的两个虚根互为共轭复数这一性质,并结合韦达定理求解,也可以将虚根代入方程,利用复数相等来求解,考查运算求解能力,属于中等题.9、A【解题分析】

根据点是线段的中点,利用点差法求得直线的斜率及其方程;联立直线与双曲线得到点横坐标,联立直线与直线,得到点横坐标。由于,根据相似可得,又因为双曲线的对称性,,故,则,整理得到,进一步求得离心率。【题目详解】设点为,点为,中点为,则,根据点差法可得,即,双曲线的实轴长为4,直线为,,直线为.联立,得;联立,得又,根据相似可得双曲线的对称性,,,,,故选A【题目点拨】本题考察双曲线离心率问题,出现弦中点考虑点差法,面积比值可以利用相似转化为边的比值,以此简化计算10、A【解题分析】

根据复数的除法运算,化简得到,再由复数模的计算公式,即可求解.【题目详解】由题意,复数满足,则,所以,故选A.【题目点拨】本题主要考查了复数的运算,以及复数模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.11、C【解题分析】解:令导数y′=-x2+81>0,解得0<x<9;令导数y′=-x2+81<0,解得x>9,所以函数y=-x3+81x-234在区间(0,9)上是增函数,在区间(9,+∞)上是减函数,所以在x=9处取极大值,也是最大值,故选C.12、A【解题分析】

先求出的坐标,再利用共线向量的坐标关系式可求的值.【题目详解】,因,故,故.故选A.【题目点拨】如果,那么:(1)若,则;(2)若,则;二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据两地的经度差得两地纬度小圆上的弦长,再在这两地与球心构成的三角形中运用余弦定理求出球心角,利用弧长公式求解.【题目详解】由已知得,所以,所以,所以在中,,所以,所以甲、乙两地的球面距离为.故得解.【题目点拨】本题考查两点的球面距离,关键在于运用余弦定理求出球心角,属于中档题.14、【解题分析】

利用周期及奇偶性可将f(log23)化为,而,则答案可求.【题目详解】∵f(x)是定义在(﹣∞,+∞)上周期为2的偶函数,∴f(log23)=f(﹣log23)=f(﹣log23+2),∵,且当x∈[0,1]时,f(x)=2x﹣1,∴.故答案为:.【题目点拨】本题考查函数的奇偶性及周期性的应用,考查指数及对数的运算,属于基础题.15、[0,2)【解题分析】命题p:m<0,命题q:m<2.∵p与q一真一假,∴或解得0≤m<2.答案:[0,2).16、【解题分析】

计算高三所占扇形圆心角度数,再根据比例关系求得高三年级的交稿数.【题目详解】根据扇形统计图知,高三所占的扇形圆心角为.且高一年级共交稿份,则高三年级的交稿数为(份),故选:D.【题目点拨】本题考查扇形统计图的应用,解题时要根据扇形统计图的特点列等式求解,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或.【解题分析】

(1)设椭圆的标准方程为:1(a>b>0),由离心率为,点P为椭圆C上任意一点,且|PF|的最小值为1,求出a2=2,b2=1,由此能求出椭圆C的方程;(2)设的方程为:,代入得:,由弦长公式与点到线的距离公式分别求得,由面积公式得的方程即可求解【题目详解】(1)设椭圆的标准方程为:1(a>b>0),∵离心率为,∴,∴a,∵点P为椭圆C上任意一点,且|PF|的最小值为1,∴c=1,∴a2=b2+c2=b2+1,解得a2=2,b2=1,∴椭圆C的方程为1.(2)因,与轴不重合,故设的方程为:,代入得:,其恒成立,设,则有,又到的距离,解得,的方程为:或.【题目点拨】本题考查椭圆方程的求法,考查直线方程的求法,考查直线与椭圆的位置关系,准确计算是关键,是中档题,解题时要认真审题,注意椭圆性质的合理运用.18、(1);(2)①14,②【解题分析】

(1)令即可;(2)①或,再分别讨论是否符合题意;②,,再利用二项式定理逆用计算即可.【题目详解】(1)当时,令,得二项式的展开式中各项系数和为.(2)①由题意知,,即,即,即,解得或.当时,,是常数项,符合题意;当时,若是常数项,则,不符合题意.故n的值为14.②由①知,,则,所以.因为,所以.所以.【题目点拨】本题考查二项式定理的综合应用,涉及到各项系数和、等差数列、组合数的计算,考查学生的计算能力,是一道中档题19、(1)或;(2)证明见解析;(3)以线段为直径的圆过定点,定点的坐标或.【解题分析】

(1)设点、,设直线的方程为,将直线的方程与抛物线的方程联立,列出韦达定理,由,可得出,代入韦达定理可求出的值,由此可得出点的坐标;(2)求出线段的中垂线的方程,求出点的坐标,求出、的表达式,即可证明出为定值;(3)根据对称性知,以线段为直径的圆过轴上的定点,设定点为,求出点、的坐标,由题意得出,利用平面向量数量积的坐标运算并代入韦达定理,可求出的值,从而得出定点的坐标.【题目详解】(1)设点、,设直线的方程为,易知点,,,由可得,得.将直线的方程与抛物线的方程联立,消去得,,由韦达定理得,,,,得.此时,,因此,点的坐标为或;(2)易知,,,所以,线段的中点坐标为,则直线的方程为,即,在该直线方程中,令,得,则点.,,因此,(定值);(3)如下图所示:抛物线的准线方程为,设点、.,,、、三点共线,则,则,得,则点,同理可知点.由对称性可知,以线段为直径的圆过轴上的定点,则.,.,解得或.因此,以线段为直径的圆过定点和.【题目点拨】本题考查抛物线中的向量成比例问题、线段长度的比值问题以及圆过定点问题,一般将直线方程与抛物线方程联立,利用韦达定理设而不求法进行求解,考查运算求解能力,属于难题.20、(1);(2)见解析.【解题分析】

分析:(1)由数据可得:,从而求可得公式中所需数据,求出,再结合样本中心点的性质可得,进而可得回归方程;(2),结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.详解:(1)由令得,由数据可得:,,于是,得故所求回归方程为(2)条件,于是求出,即6年中有3年是“效益良好年”,,由题得,012所以的分布列如表所示,且。点睛:本题主要考查非线性拟合及非线性回归方程的求解与应用以及离散型随机变量的分布列与期望,属于难题.是源于课本的试题类型,解答非线性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论